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In this paper, we propose a Hybrid Algorithm (HA) to solve the Fixed Charge Solid Location and
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during transportation planning or load consolidation. The HA integrates two heuristics into the Genetic
Algorithm framework to solve the FCSLTP. Genetic operations are used to select the best combination of

facility locations while a greedy heuristic which uses some cost relaxations are used for the initial load
allocation. An improvement heuristic, a modified stepping stone method, is then used to consolidate load
allocations to realize further possible cost savings. Parameters used for the genetic operations were decided
through preliminary studies. Computational studies using randomly generated data were performed to
compare the HA solutions with the solutions obtained using CPLEX, a commercial solver. Performance
comparison was done based on the quality of solution and computing time. The results suggest the solution

approach is competitive.
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1. INTRODUCTION

The basic multi-item distribution or Solid Transportation problem (STP)
introduced by and solved by extends the classical transportation problem
(Schell, 1955; Haley, 1962). The STP occurs both in manufacturing and the
logistics industry. For example, STP is solved in the logistics industry when
decisions are to be made on the quantity of products to move from facility
locations to depots or warehouses to customer locations given a limited
number of transport resources. In addition, STP finds its use in process
industries where raw materials from different sources are required to be
shipped to particular destinations in order to meet a target demand
requirement (Kundu et al,, 2017). The basic STP model has been extended
to capture some other real-world problems. Some of these problems are
encountered during shipping and they include modelling of fixed charges,
incremental discounts, price breaks and uncertainties.

As a result, new problem variants are created. Some of these variants are
described (Yang and Liu, 2007; Ojha et al.,, 2010; Halder et al,, 2017). A
variant of the STP we are interested in is the Fixed Charge Solid
Transportation Problem (FCSTP). The FCSTP as noted is concerned with
determining the quantity of products to ship from a fixed set of sources to
certain destinations using different conveyances while also considering an
associated route fixed charge (Sanei et al,, 2017). They further stated that
since similar problems such as the Fixed Charge Transportation Problem
(FCTP) and Step-Fixed Charge Transportation Problem (SFCTP) have been
established to be NP-hard problems, the FCSTP which is an extension of
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the FCTP implicitly becomes more difficult to solve due to the additional
conveyances constraints. Recently, a group researchers discussed a solid
transportation and location problem which integrates facility location
problem with transport conveyances (Das et al.,, 2019).

However they did not consider the reality of fixed charges in their models.
It is well established in the literature that exact solution approaches such
as branch and bound or branch and cut, can provide optimal solutions to
NP-hard problems of the class of FCSTP. However, their solution may
become ineffective as problem size increases. This has encouraged the
development of both heuristics and metaheuristics to solve problem
variants of the STP. A group researchers developed a genetic algorithm to
solve a discounted fixed charge solid transportation problem (Ojha et al.,
2010). Some researchers proposed a hybrid metaheuristic which uses
Tabu search to solve FCSTP with uncertainties in the problem parameters
(Zhang et al,, 2016). Some researchers developed heuristics to solve an
FCSTP with fuzzy parameters (Chen et al,, 2017; Halder et al, 2017). The
use of Lagrange relaxation heuristics was applied to solve FCSTP in which
there are more than one fixed charges associated with the transportation
routes (Sanei et al, 2017). Metaheuristics are currently being utilized to
solve NP-hard problem similar to the FCSTP as indicated earlier.

As noted by some researcher metaheuristics, unlike classical heuristics,
possess abilities to prevent optimization solutions from being stuck in
local optima (Genove and Gulias, 2011; Fernandes et al., 2014). In addition,
the multidimensional search patterns of metaheuristics make navigation
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towards optimal or near-optimal solutions feasible. Metaheuristics, such
as the Genetic Algorithm (GA), have been utilized either in their pure or
hybrid forms with other improvement heuristics to solve various
combinatorial problems such as those in the class of FCTP and FCSTP.
Some works such as have shown how pure GA and hybrid GA have been
applied to solve fixed charge problem variants (Perez-Salazar et al., 2015;
Calvete et al,, 2016; Guo et al,, 2017; Hiassat et al.,, 2017; Yousefi et al.,
2018; Ghassemi and Hashemi, 2018). A group reserchers extended their
previous GA model to solve an FCTP with the introduction of truckload
constraints (Balaji et al., 2009). In this paper, we consider a variant of the
FCSTP, referred to as the Fixed Charge Solid Location and Transportation
Problem (FCSLTP).

This problem seeks to integrate the facility location problem and the fixed
charge solid transportation problem. These two problems are of different
planning horizons ranging from long to short terms. Solving these
problems independently might lead to suboptimal solutions. Therefore, an
integrated solution will be necessary to prevent possible sub-optimality of
the solutions. Furthermore, this problem is an extension of FCSTP,
extended by the cost of facility location. Therefore, we implicitly classify
this problem to fall in the NP-hard class of problems. We further propose
a hybrid heuristic solution that uses the GA process to select a combination
of feasible facility locations while allocation from the feasible locations is
achieved using a constructive greedy heuristic. An improvement heuristic,
which we have termed modified stepping stone algorithm, is used to
further consolidate load distribution for cost reduction and improve the
search for a better solution.

In order to test the effectiveness (objective function) and efficiency
(solution time) of our hybrid GA method, we compare our results with the
solutions provided by CPLEX, a commercial solver. Section 1 consist of
significance, motivation and existing research on the variants of STP and
solution methods. This section is concluded with a gap analysis as shown
in Table 1 below. Section 2 consists of model formulation for the variants
of FCSTP and FCSLTP. Section 3 provides a detailed explanation and
illustration of the Hybrid heuristic considered. Preliminary experiments
and computation study are presented in section4. The experimentation
and results obtained between the hybrid heuristic and CPLEX are
compared.

Section 6 summarizes the paper and provides future improvements to the
hybrid heuristic.

Table 1: Problem Gap analysis

Selected Problem Characteristics Solution
Authors Method
Variabl  Route Facility Conveyanc Type Class
e cost fixed Locatio e constraint
cost n fixed
cost
Sani et al. Lagrange  Heuristics
(2017) ~ ~ X 7 Heuristic
Vs
CPLEX

Lagrange  Heuristics

Oyewole and Ny ~ ~/ ~

Adetunji (2018) Heuristic
Vs
CPLEX
Das et al. ~“ X ~ ~ locate- Heuristics
(2019) allocate
heuristic
This paper ~ ~ N2 N4 Genetic Hybrid of

Algorithm  Meta-
+greedy Heuristics
heuristic +  and classical
Modified  heuristics
stepping

stone

Vs

CPLEX

2. MODEL FORMULATION

The FCSLTP is modelled as a mixed-integer linear programming problem
consisting of m feasible sources or locations, n destinations or customers,
and a conveyances or transport sources. Our FCSLTP basically differs
from the FCSTP discussed in that location costs, location capacities, route

costs and route capacities are simultaneously used in determining
whether locations will be open or closed when servicing customers (Sanei
etal, 2017). Figure 1 further describes the FCSLTP. Moreover, our model
formulation and assumptions considered are similar to those presented
and rehashed in this paper (Oyewole and Adetunji, 2018). They
introduced the FCSLTP and attempted to solve the model using CPLEX and
Lagrange relaxation heuristic. The CPLEX solution outperformed Lagrange
relaxation heuristic. However, this paper considers another heuristics
which is a hybrid of metaheuristic and classical heuristics and compares
the solution obtained with that of CPLEX. The FCSLTP seeks to minimize
total transportation and location costs by determining the optimal
allocations from selected open locations through open routes via a set of
conveyances. In order to ensure comprehension of our FCSLTP
formulation, we present the formulation of the FCSTP as described (Sanei
etal,, 2017). Subsequently, we present the formulation of our FCSLTP.

5

Destination 1

B =] =

Plant/Location 1 Transport
@ /ﬂ*- Medium 1 Destination 2
Plant/Location 2 \ Q@
Destination 3
% Transport
Infeasible Location ~ Medium 2

Plant/Location 3 and routes

Destination 4

Figure 1: [llustration of FCSLTP
2.1 Model parameters

i: Index for sources or facility locations (warehouses, depots etc.)
Jj: Index for destinations (customers, other warehouses etc.)
r: Index for conveyances (or Transportation mediums)
m: Number of sources
n: Number of destinations
a: Number of conveyances
Cirj : Variable cost of shipment from source i through conveyance r to
destination j.
: Capacity at source i.
i : Demand at Destination j.

: fixed charge for keeping a facility location open.

S;

b;

T, : Capacity of conveyance 1.

F;

Hy,j : Fixed cost (fixed charge) incurred for shipping from source i through

conveyance 1 to destination j.
2.2 Decision Variables

X;rj+ Quantity of products transported from source i through conveyance
7 to destination j.

y; + Variable indicating which facility location is opened.

Z;; ¢ Variable indicating which conveyance means is utilized en route

@)

2.3 Objective function for the FCSTP

min (21 Xr=1 D=1 CirjXirj  + Niz1 D=1 Xj=1 HirjZirj 1

Subject to

S Xy S S Vi=1l.m @)

Y XXy = D vVj=1l.n (3)
L XXy < Th Vr=1..a 4)

Xp; 20 Vi=1l.m,r=1..a,¥Vj=1..n,V (5a)

Z={y i 20 Vi=1.mvr=1.aVj=1.n, (5b)
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Expression (1) is the objective function. The first term is the route variable
cost per conveyance type and the second term is the route fixed-charge
cost per conveyance type. constraint (2) is the supply capacity constraint
ensuring no supply preference for selected locations. constraint (3) is the
demand constraint to be met at each destination. Constraint (4) is the
conveyance capacity. Constraint (5a) refers to the non-negativity
constraint for the continuous variables and constraint (5b) refers to the
binary constraints for the route fixed charge requirement.

2.4 Objective Function (minimum cost function) for FCSLTP:

Minimize (Z)=

YL Fyi+ XXX Gy + X Xt X1 HirjZi (6)

Subject to

Y1 Xici Xy S SV Vi=1l..m (7)
Ly X=Xy = D Vj=1..n (8)
i Xy < Ty Vr=1..a 9

Xirj =0 vi=l.m,Vr=1..a,Vj=1..n (10a)

2 :{é Of;grjife Vi=l.m,V,j=1.n,¥r=1.a  (10b)

y; =0o0r1 Vi=1l..m (10¢)

Expression (6) is the objective or the cost function, which we seek to
minimize. The first term computes the total facility location cost, the
second term computes the total route variable cost and the third term
computes the route total fixed charge. Constraint (7) is the supply capacity
constraint of each facility location or sources. It also ensures that
capacities of closed facilities are not utilized. Constraint (8) is the demand
constraint indicating the destination demands should be met. Constraint
(9) is the conveyance capacity constraint. It ensures that capacities of
selected conveyances are not exceeded. Constraint (10a) refers to the non-
negativity constraint for the continuous variables. Constraint (10b) is
binary indicating whether or not there is shipment using a conveyance
along the particular route. Constraint (10c) is binary indicating whether a
facility is opened or not.

3. GENETIC ALGORITHM

The Genetic Algorithm (GA) is a multi-dimensional search strategy defined
as a framework that imitates the evolutionary principle of nature to
provide solutions to NP-hard combinatorial problems (Fernandes et al.,
2014). The GA has also been viewed as a probabilistic or stochastic search
technique due to the probability rates normally associated with the
genetic operations involved in producing solutions during the search
process. As noted by the successful implementation of the GA depends on
the wuser-defined solution representations, initialization, genetic
operations and terminating conditions (Jawahar et al., 2012; Perez-Salazar
etal., 2015). The solution representation basically is concerned with how
to encode and decode the feasible solution of the combinatorial problem
taking part in the genetic operations. These feasible solutions are usually
referred to as chromosomes. In addition, the representation of each
individual variable type making up the chromosomes (i.e. genes) has to be
properly captured. This is because optimization variables could either be
continuous, binary or integer. The representation types used have been
noted by several authors to determine how sensitive the GA will be in
converging to the solution desired. The Genetic operations consist of the
chromosome selection method, crossover operation and mutation
operation used to ensure necessary diversity in the search process. The
stages of the GA implementation include initialization, crossover, mutation
and termination.

3.1 Initialization

The initialization conditions include the determination of the desired
fitness function (objective function) for the GA procedure, chromosome

representation, initial population size and the terminating condition of the
GA, including the number of generations.

3.2 Crossover operation

The aim of the crossover is to generate and promote the replication of
good solutions (chromosomes) while rejecting the bad ones. Before
crossover is performed, chromosomes are selected using some selection
probabilities. The roulette wheel technique is a popular selection
technique used in literature to achieve the selection (Jawahar and Balaji,
2009; Ojha et al, 2010; Pérez-Salazar et al, 2015). The crossover
operation ensures the reproduction of new offspring or children solution
from parent solutions. Different cross over operation types have been
discussed in the literature as noted (Jawahar and Balaji, 2009). These are
either based on a single point or two-point crossover such as the partially
mapped crossover and the ordinal mapped crossover.

3.3 Mutation operation

The mutation operation involves perturbation of some of the genes
(variables) of a chromosome-based on some assigned probabilities known
as the mutation rate. Genes are also randomly selected using a user-
defined mutation rate. The mutation operation or gene replacement
essentially gives the GA its power of arriving at other new solutions not
possible with the crossover and have the potential of being better than
existing solutions.

3.4 Termination

Terminating conditions usually involve the stopping criteria normally
employed in optimization problems such as the number of desired
iterations and optimization time desired. For the GA the number of
generations employed can also be utilized as a stopping criterion.

3.5 Solution Representation

Choosing a suitable representation for the candidate solutions of the
original problem has been considered by several authors to be based on
the optimization problem structure and the ease of performing the genetic
operations of the GA. The matrix and vector (binary) representation were
discussed (Vignaux and Michalewicz, 1991). Priority based encoding was
proposed by (Gen et al, 2006). This was to prevent likely infeasibility
during genetic operations observed with the priifer number technique of
representing chromosomes discussed by (Gottlieb et al., 2001). Antony et
al. [26], while discussing solutions to a m-number of sources and n -
number of destinations FCTP, underscored the differences between the
matrix, permutation, priifer number and direct representation (Antony et
al,, 2011). The differences were based on the number of genes involved in
the chromosomes. They showed the matrix representation as possessing
the highest number of genes representing the transportation problem
which is m X n, while the priifer number had the leasti.e. m+ n—2. A
hybrid chromosome representation that presents both the continuous and
the binary variables of the original mixed-integer problems as an array
was discussed (Perez-Salazar et al., 2015; Hiassat et al., 2017).

In this paper, a vector of binary numbers is used to represent the facility
locations while a matrix of continuous numbers is used to represent the
candidate solution, which is essentially the allocated quantity from the
facility locations (sources) and to the points of demand (destinations). The
facility location vectors are encoded as the GA chromosomes and
manipulated through the various GA operations while the constructive
greedy heuristics and improvement modified stepping stone heuristics
work on the allocation matrix. Based on the result from the GA operations
on the facility location vector (as shown in Figure 2) the allocations
(shown in Figure 3) are made. A typical matrix representation used for a
sample feasible solution to an original problem with 3-candidate facility
locations, 4-demand destinations and two conveyances is shown in Figure
3. The facility location and route fixed charges are incurred when the
continuous variable part of equation (1) are non-zero.
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Figure 2: Sample chromosome representation for an FCSLTP with 3

sources
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Figure 3: Typical candidate solution representation for a 3-source, 4 -
destination and 2- conveyance problem

3.6 Initialization
3.6.1 Fitness function

The fitness function to be used in the GA is the objective function of the
original problem. This is same as equation (1) above.

3.6.2 Initial population and candidate feasible solution generation

Given the location fixed cost F; of dimension ( m), route fixed cost H;,; of
dimension (m X a X n), variable cost c;; of dimension (mxa X n),
population size (p) and number of generation (g), the generation of the
candidate feasible solutions to the original problem (c; ..c,) and the
initial population of chromosomes are described below and illustrated in
Figures 4 and 5 below respectively.

1. Random generation of the combination of facilities or locations that
possess sufficient capacity to meet demand. We select y; (i = 1...m)
such that the feasibility Yi21Siyi = X7 D; is checked and
uniqueness of each combination of facilities is ensured. A matrix
(mx p) termed Popcurom IS created to store each feasible
combination of the facilities. The matrix Popcp om is also referred to
as the population of chromosomes in this paper and represented in
Figure 4 below.

2. Creation of a Relaxed Average Variable Cost (RAVC) matrix of
dimension (m X a X n). This is based on the integration of the route
fixed cost, the variable cost of the problem and minimum of all
capacities and it is used to allocate capacities. This is similar to the
least equivalence variable cost discussed by Jawahar, Balaji [22]. The
RAVC is stated as:

Route fixed cost (Hir;)
min(s;,D;,T)

RAVC (irj) = + Variable cost (c;r;) (11)

3. Creation of the matrix of candidate feasible allocation (Illustrated with
Figure 5). We created a three-dimension matrix of dimension (ma x
n X p). Thisis called the candidate feasible solution allocation matrix
and termed CFS,,. The procedure for creating CFS,, is stated below.

(a) From the earlier Popcprom Of feasible combinations of facilities
(chromosomes), select each feasible chromosome (m ) from the
(p) rows of population.

(b) Compute the RAVC as stated above to obtain the matrix(m X
ax n).

(c) Apply the constructive greedy heuristic (illustrated with Figure
6) to make the initial allocation. The greedy heuristic utilizes the
m rows of the matrix obtained in step (3a) and the RAVC
computed in step (3b) to allocate into the first layer of CFS,
with dimension (ma X n x 1). This is termed CFS;

(d) Use the improvement heuristic (the modified stepping stone
algorithm) (illustrated in Figure 7). This is based on the actual
route fixed cost and variable cost matrix, to improve
allocations obtained in step(3c) above. This gives the final
allocation for the initial candidate feasible CFS;.

(e) Repeatstep (3a) to (3d) for all the candidate feasible solution
(1 ...cp) to obtain CFS,,.

4. Computation of the candidate feasible solution fitness function
using the actual cost parameters and the allocation of CFS,, obtained
in step (3€) above.

mxp
i=1 i=2 i=m
1 0 1| pop=1
1 0] 0f pop=2
0 1 - 1| pop=p

Figure 4: Sample populations of Chromosomes (m X p)
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o
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Figure 5: Candidate feasible solution allocation matrix( CFS;)
3.6.3 Greedy heuristic

This utilizes the RAVC to allocate demand such that the source, transport
and demand capacities are not exceeded. This is further illustrated in
Figure 6.

Greedy allocation heuristic

For every entry of demand, j = 1:n,
find the minimum RAVC from (k = 1 : ma) as (k, j)
locate corresponding source i = 1:m andr = 1:a to selected
(k)
While demand (j) > 0
If T.>0and S; > 0
X;rj = allocation = min (§;, D;, T,)

Subtract x;,; from D;
Subtract x;,; from S;
Subtract x;,; fromT,

Else

Move to the next minimum RAVC (k, j)

End if
Updatej:j =j+1
End for

Figure 6: Greedy heuristic to populate Initial solution
3.6.4 Improvement Heuristic (Modified stepping stone method)

The modified stepping stone method is done in order to check for possible
cost savings through route fixed cost and variable cost trade-off by either
eliminating route fixed costs and/or possible reduction in variable costs
subject to capacity allocation. A set of acronyms are defined below in the
modified stepping stone method for comprehension purposes and
presented below.
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i,r and j are already defined under section 2.1

(m,n, a) is as stated in the original problem in section 2.1

Define source indices (iandu): i < u < m

Define destination indices (jandp): j < p < n

Define conveyance indices (randv): r < v < a

Xirj => variable allocation at positon (iry). (Similarly for x;., , Xypp , Xuvj )
H;j => Route fixed cost at position (ir)).(Similarly for Hy., , Hypp , Hyyj )
min_alloc => Minimum of allocation.

variable_cost change at position (irj)= (¢irj + Cypp) — (Cirp + Cuvj)-
(based on X, Xirp » Xyvp » Xuyj and Illustrated in Figure 7)

The improvement heuristic is illustrated in Figure 7, while an Illustration
of the selection of variables for the improvement heuristic( modified
stepping stone consolidation) is presented in Figure 8.

Improvement Heuristic (Modified stepping stone method)

For every source, transport means (i =1,r =1)to (i =m,r = a)
Source = source 1
For every destinationj = 1:n—1, ifx;; > 0
Source, Destination = sourcel, dest 1
(# Source, Destination combination is explained in Figure 7 below
#)
If for any destinationp > j, x;5 > 0
Source, Destination = source 1, dest 2
If for any source (u>iandv >=r) OR source (u>=
iand v >71), Xy > 0
Source, Destination = source 2, dest 2
If x,; >0
Source, Destination = source 2, dest 1
Find min_alloc = min (Xirj, Xirp, Xuvp» Xuvj)
If Hy,.j < variable_cost change (check 1) THEN
(consolidation step1)
Xipj = Xij —min _alloc
Xuvp = Xupp — min _alloc
Xirp = Xirp +min _alloc
Xypj = Xypj +min _alloc
(Repeat check1 for fixed costs positions H;,,,
Hypp and Hy,; and  apply
consolidation step1 if true)

pattern of

ELSE  If Hj.; > variable_cost change (check 2)THEN
(consolidation step2)
Xirp = Xiyp — min _alloc
Xupj = Xypj — min _alloc
Xirj = Xirj +min _alloc
Xyvp = Xypp +min _alloc

(Repeat check2 for fixed cost positions
Hirp, Hyyp and Hy,,;  And apply pattern of
consolidation step?2 if true)

Else (noimprovement for cost position iryj)

Figure 7: Improvement heuristic (modified stepping stone procedure).

destl destzl
Source 1
Py epp— ppp i
¥, =1 ”mflx o| ¥1131 of T 1 e Xy
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‘o 0 ! o) o
=0 | ]
¥z s, L0 0 o of B
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T
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¥2=l g, 1ol B g lo| Fou I
Source2 4
v | [ o -V,
Xuyj
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Figure 8: Selection of variables for load consolidation

3.7 Generation of New Population

The generation of new chromosomes is discussed in this section. We put
an emphasis on the best fit solution over the weak solutions during the
crossover and mutation operations as also indicated by in their solution
(Jawahar and Balaji, 2009). As described in section 3.2 the generation of
the initial population is done by generating a combination of facilities such
that i, S; ¥; = Xj-;D; The random search is implemented for the
binary facility location term in this paper and stored in a matrix of
dimension (m X p) as shown in Figure 4 above.

3.7.1 Inputs for new population
The new population generation function takes as input the following:

a) The parent matrix (m X p) generated in section 3.2

b) A vector of sort index of chromosomes (m X p) in increasing
order of cost for each chromosome (dimensionp).

c) The crossover rate (cross rate)

d) The mutation rate (mut rate)

e) The source and demand capacities corresponding to the matrix

(m x p).
3.7.2  Genetic operations procedure

The matrix of the old facilities opened (parent) contains p chromosomes,
each chromosome being a set of binary values indicating which supply
points were opened or closed. This matrix was crossed over and mutated
to create a new population on which the allocation and improvement
heuristics were applied. This cycle was repeated until the numbers of
generations (g) were completed.

This procedure is described below:

1. Determine the number of chromosome of the old population to
keep from the crossover rate (cross rate).

2. Populate the discarded chromosomes to build up a matrix of a
new population of size (m X p) using the procedure below.

a. Copy the retained chromosomes into the relevant positions
in the new population matrix, keeping the least cost
chromosome in position 1.

b. Use rank based roulette wheel selection (as shown beloow
in Figure 9) to select the two mating chromosomes among
the retained chromosomes. The rank-based roulette wheel
selects two chromosomes to be used for crossover from the
chromosomes retained from the population. It receives as
input a population of chromosomes ranked based on fitness
function from the best ranked in the first position to the
worst ranked in the last position.

c. Randomly generate the crossover point for the mating
chromosomes as described below.

d. Perform crossover (described blelow in Figure 10) and
store the two new offsprings in the next two positions in the
new population matrix.

e. Repeat step (d) until the new population matrix is fully
constructed

3. Usethe mutation rate to determine the number of genes to mutate
by flipping the binary value (0 to 1 or 1 to 0). This is described in
section 3.3.4 below.

4.  Randomly generate the two index positions to mutate in the new
matrix and flip the gene in the location while preserving the least
cost gene in position 1 unchanged

5. For every chromosome in position 2 till the last, check for
feasibility (section 3.3.5)

a. If the chromosome is not feasible, randomly locate a
position that is closed and open until the chromosome has
a number of opened sites that is feasible for demand
allocation

6.  Once new allocation matrix is complete, pass matrix to the greedy
algorithm to allocate demand and consolidate the allocation using
the modified stepping stone algorithm

7.  Repeat all steps until the number of generation is complete.
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Rank based roulette selection

rank = ranking of chromosome in the population

p = population size

cumProb = sum of probability up until the current member of the
population, initialised to zero

sumRank = sum of the rank of all members initialised to zero

chrom 1 = First chromosome selected for crossover

chrome 2 = Second chromosome selected for crossover

for all members of population,
sumRank = sumRank + rank of chromosome
end for

for all members of population,
cumProb = cumProb + ((p - rank + 1) / sumRank)
end for

Generate the mating chromosomes
number = random between 0 and 1
start from first member of population
while number =< cumProb
then chrom 1 = current chromosome
go to next member
end while
Repeat for chrom 2 what was done for chrom 1

Return chrom 1 and chrom 2

Figure 9: Rank based roulette selection
3.7.3  Crossover operation

For the crossover operation, two chromosomes are selected as a pair and
a crosspoint is randomly generated for the pairwise interchange. A
description of the algorithm for this is presented in the Figure 10.

Given a pair of chromosomes to undergo crossover operation

first chromosome = chrom 1

second chromosome = chrom 2

length of chromosome = chromLength .

crossover point = crossPoint = random integer between 1 and chromLength

For chrom 1 in the pair,
Copy gene from chrom 2 from crossPoint to the end.
Put into the same position in chrom 1.
Assign to offspring 1.

For chrom 2 in the pair,
Copy gene from chrom 1 starting from position 1 to position crossPoint
Put into the same position in the chrom 2
Assign to offspring 2.

Return offsprings 1 and offspring 2

Figure 10: Description for Crossover operation
3.7.4 Mutation operation

In this we discuss the mutation operation performed which is similar to
the description presented in section 3. The number of genes to mutate in
the population is determined based on a mutation rate. Following this,
selected genes are interchanged with other selected genes in the
population. This is further described in Figure 11.

p = number of row of matrix. equal to the population size.

numSource = number of genes in a chromosome, total equal to the number of
sources (m).

mutPercent = percentage of matrix genes to mutate.

mutNum = numbers of genes to mutate = (p) = (num Source) x mutPercent

number 1 = Generate a random number between 1 and numSource.
number 2 = Generate a random number between 2 and p.

for 1 till mutNum
flip the gene in position (number 1, number 2) of the matrix
endfor

Figure 11: Description of mutation operation

3.7.5 Check for feasibility

This section checks every chromosome representing a combination of
opened sites out of all possible sources to ensure feasibility. It accepts as
inputs the vector of demand at each destination, vector of supply capacity
at each source and the matrix of opened sites. This is presented in Figure
12.

sumDem = sum of all destination demands (from demand vector).
sum OpenedCap = sum of capacities of all opened sites. based on a chromosome
numSource = number of source sites available. equal to the number of columns of the matrix
and also equal to the length of a chromosome(m).
population size (p) = equal to the number of rows of matrix.
for all chromosomes (rows)

while sumproduct(current chromosome vector and source capacity vector) < sumDem

randomly flip one of the zerosto 1
end while

end for

Figure 12: Description of chromosome feasibility

Figure 13 below shows a summary of the working procedure of the HA
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Figure 13: Hybrid Algorithm flow chat
4. COMPUTATION STUDY

We did the computational study in two stages. The first stage is
preliminary experimentation while the second is the main
experimentation. The preliminary experimentation was performed to
obtain necessary parameters to effectively implement the HA. In addition,
it was done to identify the most influential parameters of the HA by
observing the relative effectiveness. The parameters such as the
population size (p), number of generations (g), crossover rate
(cross rate) and mutation rate (mut rate) implemented, have been
shown in the literature to affect the convergence of a GA solution. Studies
in literature have shown that important parameter settings for a GA to be
based on tuning the population size and number of generations (Ho and Ji,
2005; Fernandez wt al, 2014; Guo et al, 2017). In the main
experimentation, we assess the quality of solutions of the HA and CPLEX.
This is based on measures of performance described in section 5.0.

4.1 Preliminary experimentation

In this section the population size, number of generation, crossover rate
and mutation rate are varied. The problem sizes have been stated in the
order of (m X n X a). Where m = number of sources (or locations), n =
number of destinations or demand points and a = number of transport
sources or conveyances. In conducting parameter tunings for our HA,
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problem sizes (5x8x2, 7x10x2, 9x12x2 and 15x30x2) which represent a
sample of small to medium-sized problems comprising our test data were
selected. Population sizes considered for the smaller problem were
smaller than the medium sized problem to account for the uniqueness of
solution required to populate each population size. In both instances
initial crossover and mutation rates were randomly selected and kept
constant while the population size and number of generations were varied
in an increasing order. The population size and number of generations that
showed a quick convergence were retained. Similarly, the best performing
population size and number of generations were kept constant while the
crossover rate and mutation rate were progressively varied. Tables 2
shows the parameter variations and convergence of the test problem sizes
utilized. The values of the minimum cost obtained for the first and Last
iterations are recorded as MinCost(first) and MinCost(last) respectively.

4.2 Data Generation for experimentation

A modification to experimental data was used to test the different solution
methods (Sanei et al, 2017). We extended their benchmark data to
capture the cost of facility location which was not considered in their
model. For the facility location cost, we have used the method of
generating facility location cost instances from the supply capacities
considered in facility location literature as used (Gadegaard et al., 2017;
Fishetti et al, 2016; Guastaroba and Speranza, 2014). In this method, the
facility location cost is calculated using F; = U(0,90) + \/S_l U(100,110).
Uniformly distributed data randomly generated as integers in a unit
square coordinate U [a, b] were considered for the experiments. The letter
“a” refers to the lower cost limit and “b” is termed the upper cost limit. A
total of 45 problems instances across 9 different problem sizes were
considered for the main experimentation. We have termed problem size

Results obtained indicate that the parameter combinations all converged
to the same minimum cost except in the cases of (=10 and g =8), (p =20
and g =8) (p =10 and g =8). Some parameter combinations obtained
lower minimum cost from the initial generation (iteration). This possibly
could indicate a quick convergence when using such parameter
combinations for the HA. For the test problem sizes (5x8x2) and
(7x10%2), the results showed that the population size (30), number of
generations (50), crossover rate (0.3) and mutation rate (0.1) converged
rather quickly for the minimum cost value compared to other parameters
used. Results of the problem sizes (9x12x2) and (15x30x2) showed that
population size (50), number of generations (100), crossover rate (0.5)
and mutation rate (0.1) converged more quickly than with other
parameters. In summary, the population size and number of generations
seemed to be very effective in determine the final minimum cost value
obtained.

Table 2: Paramter tuining results. number (1) to (4) and (5) to (9) as small and medium sized problems
Problem| Problem Problem MinCost | MinCost respectively. A summary of the Problem sizes considered and the
Size Characteristic Characteristic first Last parameters used for data generation are given in the Tables3 and 4
s1 s2 respectively.
5X5X2 p g
10 ) 27689 27058 Table 3: Parameter distribution used for computations
20 20 27024 27006 Problem Size No. p;:ﬂefjl;e No of instances
30 50 27006 27006 1 Sx5x2 5
cross rate mut rate p=30g =50 2 5x8x2 5
0.7 0.3 28059 27006 3 7x10%2 5
0.3 0.3 27342 27006 4 8x8x2 5
03 0.1 27024 | 27006 2 1‘90X1120X22 g
X X
8X8X2 p g 7 10x20x2 5
10 8 27696 26782 8 15x30%2 5
20 20 27266 26782 9 30x30x2 5
30 50 26810 26782
cross rate mut rate p =30g =50 Table 4: Parameter distribution used for experimentation
0.7 0.3 26810 26782 Parameter Distribution
03 03 26782 | 26782 f)i ggg"igg;’)
0.3 0.1 26782 26782 T: U(800, 1800)
9X12X2 p g cyr U(20,150)
20 8 37694 36478 Hyj, U(200, 600)
50 100 36611 35826 My, = min(S;, D;,T,)
cross rate mut rate p =30g =50
0.7 0.3 37004 35826 4.3 Solution methods
0.3 0.3 37401 35826 We have utilized the IBM CPLEX as a solution method in this paper. IBM
03 01 36608 35826 CPLEX utilizes the conventional branch and cut algorithm and also
15X30X P 9 implements a dynamic search algorithm. According to the IBM reference
2 20 8 77240 71408 manual, the dynamic search algorithm basically uses the Branch and Cut
50 50 75100 70927 algorithm with heuristics for quick termination of some nodes explored as
50 100 73084 70927 the optimization technique (Studio, 2016). It is also indicates that the
cross rate mut rate dynamic search algorithm consists of LP relaxation, branching, cuts and
0.7 0.3 73915 70927 heuristics. At the default settings, CPLEX decides whether to provide
0.3 0.3 75150 70927 solution using the conventional branch and cut or the dynamic search
0.3 0.1 75085 70927 algorithm based on the model formulation (Studio, 2016). We have used

the IBM CPLEX 12.8 dynamic search as a solution method to the original
problem. This can imply a possible conventional Branch and Cut or
dynamic search could be used by CPLEX to find a solution. Our HA was
coded using Matlab 7.4.0. Based on the results from the preliminary
experimentation, the HA was computed with population size (30), number
of generations (50), crossover rate (0.3) and mutation rate (0.1) for the
small problem sizes. For The medium problem sizes, the HA was computed
with population size (50), number of generations (100), crossover rate
(0.5) and mutation rate (0.1). The Solution methods were implemented
on a Windows 8.1 Laptop with 6GB RAM and a processor speed of 2.5GHz

5. EXPERIMENTATION AND DISCUSSION OF RESULTS

The performance of each solution method was determined under the
following test categories.

a) A preliminary experimentation to determine the HA parameters for
the main experimentation. This was computed in section 4.1 above.
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b) Mean of each problem size. This was calculated based on effectiveness
and efficiency of each solution method. Our mean value was expressed
with the notations: CPLEX 00, and HGA 0qn-

> .CPLEX SM;
CPLEX ean = =——————  or
> L HGA SM;
HGA mean = f

i = index ofinstance number of each problem size

CPLEX SM => CPLEX minCost or CPLEX time
HGASM => HGAminCost or HGA time

The mean values give an indication of the problem size effectiveness or
efficiency

c) Instance and mean gap computation. This was also calculated based
on the effectiveness and efficiency of each solution method. The
Instance and mean gap computation were computed as percentages
respectively. These were expressed with the notations % gap ; and
% gap mean respectively.

HGASM ; — CPLEX SM ;
CPLEX SM ;

%gapi:( )><100

HGA SM 1oan — CPLEX SM oan
CPLEX SM poun

% 8aP mean = ( ) X 100

i = index ofinstance number of each problem size
Other notation are as previously indicated in (b) above.

We state that % gap; or % gap mean Values obtained can either be zero,
positive number or negative number. A zero value indicates equivalent
performance from both methods. A positive value indicates that CPLEX
obtained better results. A negative value indicates that the HA obtained
better results. The results obtained for each of the problem instances
based on our defined measures of effectiveness, and efficiency are
presented in Table 5 below. The values obtained for the individual cases
and the categorical averages are presented next. We start with the
instance observations in Table 5, followed by the problem size averages in
Table 9.

Table 5: Problem instance effectiveness, efficiency and % gap ;
o :
Problem Size | Instance no 15511&E;Xs ¢ mgt%:l)s " Cgﬁfex gg{: % g?:gsit)(Mm % gap; (Time)
5X5X2 1 18417.92 18417.92 1.14 0.13 0.0% -88%
2 18801.22 18534.22 1.12 0.13 -1.4% -88%
3 15369.09 21830.55 1.12 0.13 42.0% -89%
4 18828.75 23005.75 1.13 0.13 22.2% -89%
5 17090.47 16662.33 1.13 0.12 -2.5% -89%
5X8X2 1 31320.91 31320.91 3.06 0.17 0.0% -94%
2 26301.38 30143.11 3.00 0.17 14.6% -94%
3 24209.66 31825.38 3.02 0.16 31.5% -95%
4 25539.24 25539.24 3.05 0.17 0.0% -94%
5 25864.92 25798.92 3.01 0.17 -0.3% -94%
7X10X2 1 34676.97 34806.92 4.71 0.20 0.4% -96%
2 34760.30 33612.17 4.57 0.20 -3.3% -96%
3 32667.86 34587.04 4.53 0.23 5.9% -95%
4 36182.85 35841.88 4.72 0.20 -0.9% -96%
5 31334.72 31214.63 4.54 0.20 -0.4% -96%
8X8X2 1 26952.66 26902.27 2.96 0.16 -0.2% -95%
2 26434.64 25816.64 2.97 0.18 -2.3% -94%
3 23830.67 23830.67 2.94 0.18 0.0% -94%
4 27032.24 27225.24 2.93 0.16 0.7% -95%
5 25864.92 25316.20 2.96 0.17 -2.1% -94%
9X12X2 1 39844.21 37944.21 6.52 1.09 -4.8% -83%
2 35472.49 36024.36 6.61 1.06 1.6% -84%
3 39697.67 43278.10 6.88 1.11 9.0% -84%
4 41005.10 42701.06 6.70 1.04 4.1% -84%
5 40125.84 40749.84 6.53 1.03 1.6% -84%
10X10X2 1 30471.92 30411.76 4.67 0.89 -0.2% -81%
2 28252.39 28252.39 4.82 0.99 0.0% -79%
3 35462.65 34160.77 4.63 0.88 -3.7% -81%
4 27648.69 27648.69 4.67 0.90 0.0% -81%
5 29211.92 29496.92 4.72 0.95 1.0% -80%
10X20x2 1 64045.09 65361.83 18.00 1.77 2.1% -90%
2 57654.61 58505.61 17.40 1.63 1.5% -91%
3 62724.33 66508.88 18.19 1.56 6.0% -91%
4 63389.91 67396.36 18.12 1.79 6.3% -90%
5 68527.51 74904.08 17.90 1.81 9.3% -90%
15X30X2 1 82136.32 93036.10 54.26 2.62 13.3% -95%
2 85684.45 87040.73 56.17 2.56 1.6% -95%
3 85515.94 89097.15 55.61 2.59 4.2% -95%
4 81937.51 81588.46 55.20 2.71 -0.4% -95%
5 83554.61 89640.24 55.46 2.66 7.3% -95%
30X30X2 1 76649.71 75140.45 59.25 2.83 -2.0% -95%
2 81897.82 82452.20 54.88 2.94 0.7% -95%
3 81475.84 81725.59 64.07 2.92 0.3% -95%
4 78941.52 79702.55 57.16 2.74 1.0% -95%
5 88615.06 89680.65 57.33 2.95 1.2% -95%
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5.1 Observations on CPLEX and HA minimum cost results

Based on our effectiveness measure of performance, CPLEX should
expectedly obtain better results than the HA. This is because of the
conventional Branch and Cut implemented by CPLEX. The Branch and Cut
has been noted to be an exact algorithm that can generate optimal
solutions like Branch and Bound (Wolsey et al.,, 1998). Since CPLEX uses
the branch and cut algorithm, we can expect that the solution provided by
CPLEX should be at least as good as that provided by our HA algorithm.
However, the use of some other search heuristics to speed up the
convergence of CPLEX in its dynamic search function as indicated can lead
to some less superior results than the HA (Studio, 2016). This is possible
because of some nodes that could have been fathomed away, especially in
instances where there are many nodes at a given search level with close
possible final solution in their exploration, whose exploration may be
considered not to hold so much promise but can significantly increase the
time of convergence of the solution. We further present an instance of
problems solved (Table 6 below) and show the actual allocations of
randomly selected instances (Tables 7 and 8) where the HA seemed to
obtain marginally better results than the CPLEX. The Feasibility of both
solutions method is also observed.

Table 8: Allocations obtained using HA
i
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0 r=1
4 0 0 0 0 0
5 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 89 57 0 71 0 r=2
4 0 90 0 56
5 0 0 0 0
j 1 2 3 4 5

We define limits of significant difference in effectiveness performance as
about 5% based on the popular alpha level applied on many empirical
tests. This implies that any difference in values between the results posted
by CPLEX and HA that is in this range is probably not significant enough. If
we follow this approach it can be seen in Table 5 above that the instances
tend to show less significant differences with increase in problem sizes,
while more significant differences are observed with the smaller problem

Table 6: A Sample 5X5X2 Problem sizes. In addition, the percentage difference in solution time (% gap ;
F. 1963.966| 1883.348| 2040.107| 1682.118 2103 (Time) across the problem instances indicates that the HA solution seems
5 311 340 378 227 361 much faster than CPLEX.
. 89 57 90 71 56
- Table 9: Mean effectiveness, mean efficiency and % gap mean
T 1736 1488 Problem | CPLEX ,,| HGA ,,,.| CPLEX ,,| HGA ,,.| % gap ,{ % gap m|
Cixj Size (Min (Min (Min (Time)| (Min (Time)
i j=1 j=2 j=3 j=4 j=5 Cost) Cost) Cost) Cost)
1 58 36 44 146 70 r=1 5X5X2 | 17701. 19690 | 1.13 0.13 11.2% -89%
2 100 42 98 89 97 49 .16
3 83 70 118 50 114 5X8X2 | 26647. 28925 | 3.03 0.17 8.5% -95%
4 90 144 93 49 26 22 .51
5 142 45 133 98 24 7X10X | 33924. 34012 | 4.61 0.21 0.3% -96%
; Cuj 2 54 .53
8X8X2 | 26023. 25818 | 2.96 0.17 -0.8% -94%
1 101 25 96 84 94 r=2 03 20
2 45 33 74 97 104 9X12X | 39229. 40139 | 6.65 1.07 2.3% -84%
3 27 55 127 32 67 2 06 52
4 o1 114 4 45 22 10X10 | 30209. | 29994 | 4.70 092 | -07% | -80%
5 . 132 22 109 87 83 X2 51 11
: Y 10X20 | 63268. 66535 | 17.92 1.71 5.2% -90%
1 330 435 268 223 357 | r=1 x2 29 35
2 294 272 591 460 572 15X30 | 83765. | 88080 | 55.34 | 2.63 | 52% | -95%
3 441 254 508 290 214 X2 77 54
4 263 375 586 378 436 30X30 | 81515. | 81740 | 58.54 288 | 03% | -95%
5 559 559 231 564 295 X2 99 29
i Hyj
1 562 300 227 294 460 | r=2 The group results as shown in Table 9 above also indicate that there seems
2 578 515 546 354 253 not to be any significant difference in effectiveness as the problem size
3 334 372 232 303 565 increases while efficiency seems to favour HA. Figure 14 below shows a
4 456 425 408 258 393 plot of the solution time of the HA and CPLEX as the problem size
5 384 331 379 414 236 increases. The increase in solution time trend indicates possibility of the
HA obtaining solutions faster than CPLEX when interpreted as probably
Table 7: Allocations obtained by CPLEX being equivalent as stated earlier.
i
1 0 0 0 0 0 __60 —
2 0 0 0 0 0 £ 50 /
3 0 0 0 0 0 r=1 g% 7
@ 30
4 0 0 0 0 56 £ 5 /
- L4 em e» CPLEX
5 0 0 0 0 0 S 10 >
1 0 0 0 0 0 § 0 | e e — —HGA
g L L L L GO LI L L A
; 809 507 g 701 g r=2 R
4 0 90 0 0 Problem size
5 0 0 0
j 1 2 3 4 5

Figure 14: Computation time between CPLEX and HA per problem size
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In Figure 15 we show a representation of the number of times each
solution method obtained comparable results for each problem size. By
comparable results we imply the results obtained by HA are within a
neighborhood of between (0% and -5%) of CPLEX values. In Figure 15, we
also show a representation of results of CPLEX that were significantly
better than HA. By being significantly better we imply the computations
% gap ; (Min Cost) greater than 5%. These analyses were done for the
minimum cost computation (effectiveness).

31 =—= R B &R n

1ii

o o

M CPLEX Significatly better

Number of instances

HGA Comparable to CPLEX

Yoo Y

AR SO SRS
P FFL LS
AT ST
Problem Size

Figure 15: Instances CPLEX obtained comparable and significantly better
results than HA

A summary of the results presented, showed that CPLEX seems able to
obtain better results than the HA most of the times. Nonetheless, CPLEX
could become computationally intensive as problem size increases and
may return good values in an exponential time when larger sized problems
are considered. Therefore, the HA which may not guarantee the best
solutions most of the times but converges faster with good performances
for many problem instances can be of significant value for solving the
FCSLTP.

6. CONCLUSION AND FUTURE DIRECTION

An optimization problem that integrates facility location and the fixed
charge solid transportation problem was considered in this paper. This
problem was termed Fixed Charge Solid Location and Transportation
problem (FCSLTP). In order to solve this problem, solutions from CPLEX
commercial solver and our Hybrid Algorithm (HA) were considered. Our
HA utilizes the Genetic Algorithm framework to generate a population of
feasible facility locations, while a greedy heuristic which uses cost
relaxations implements the load allocation. After the allocations are done,
an improvement heuristic is used to further search the solution space for
better results. Some measures of performance such as mean, percentage
instance and mean gap were used to assess the HA and the CPLEX
solutions. The solution time and mean solution time were also used to
assess both solution methods.

The HA demonstrated a competitive performance in obtaining solutions
within the neighborhood of CPLEX values based on our effectiveness
measure. In addition, the solution time of the HA seems much faster than
CPLEX through all the problem sizes considered, and this even more so as
the problem size increases. However, overall effectiveness results indicate
that CPLEX can obtain results comparable to and sometimes much
significantly better than HA. This however could be computationally
intensive for CPLEX as problem size increases. Possible extensions to the
HA include using a modified stepping stone that can search the non-basic
positions of the load allocations. Furthermore, the GA or other
metaheuristics could also be used to perturb the load allocations in search
of better results. The reduced computation time of the HA makes it
suitable as a hybrid heuristic to other solution methods to obtain better
results.
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