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In this paper, we propose a Hybrid Algorithm (HA) to solve the Fixed Charge Solid Location and 
Transportation problem (FCSLTP). The FCSLTP considers the cost of facility location and route fixed costs 
during transportation planning or load consolidation.  The HA integrates two heuristics into the Genetic 
Algorithm framework to solve the FCSLTP. Genetic operations are used to select the best combination of 
facility locations while a greedy heuristic which uses some cost relaxations are used for the initial load 
allocation.  An improvement heuristic, a modified stepping stone method, is then used to consolidate load 
allocations to realize further possible cost savings.  Parameters used for the genetic operations were decided 
through preliminary studies. Computational studies using randomly generated data were performed to 
compare the HA solutions with the solutions obtained using CPLEX, a commercial solver.  Performance 
comparison was done based on the quality of solution and computing time. The results suggest the solution 
approach is competitive. 
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1. INTRODUCTION 

The basic multi-item distribution or Solid Transportation problem (STP) 

introduced by and solved by extends the classical transportation problem 

(Schell, 1955; Haley, 1962). The STP occurs both in manufacturing and the 

logistics industry. For example, STP is solved in the logistics industry when 

decisions are to be made on the quantity of products to move from facility 

locations to depots or warehouses to customer locations given a limited 

number of transport resources. In addition, STP finds its use in process 

industries where raw materials from different sources are required to be 

shipped to particular destinations in order to meet a target demand 

requirement (Kundu et al., 2017). The basic STP model has been extended 

to capture some other real-world problems. Some of these problems are 

encountered during shipping and they include modelling of fixed charges, 

incremental discounts, price breaks and uncertainties.  

As a result, new problem variants are created. Some of these variants are 

described (Yang and Liu, 2007; Ojha et al., 2010; Halder et al., 2017).  A 

variant of the STP we are interested in is the Fixed Charge Solid 

Transportation Problem (FCSTP). The FCSTP as noted is concerned with 

determining the quantity of products to ship from a fixed set of sources to 

certain destinations using different conveyances while also considering an 

associated route fixed charge (Sanei et al., 2017). They further stated that 

since similar problems such as the Fixed Charge Transportation Problem 

(FCTP) and Step-Fixed Charge Transportation Problem (SFCTP) have been 

established to be  NP-hard problems, the FCSTP which is an extension of 

the FCTP implicitly becomes more difficult to solve due to the additional 

conveyances constraints. Recently, a group researchers discussed a solid 

transportation and location problem which integrates facility location 

problem with transport conveyances (Das et al., 2019).  

However they did not consider the reality of fixed charges in their models. 

It is well established in the literature that exact solution approaches such 

as branch and bound or branch and cut, can provide optimal solutions to 

NP-hard problems of the class of FCSTP.  However, their solution may 

become ineffective as problem size increases. This has encouraged the 

development of both heuristics and metaheuristics to solve problem 

variants of the STP. A group researchers developed a genetic algorithm to 

solve a discounted fixed charge solid transportation problem (Ojha et al., 

2010).  Some researchers proposed a hybrid metaheuristic which uses 

Tabu search to solve FCSTP with uncertainties in the problem parameters 

(Zhang et al., 2016). Some researchers developed heuristics to solve an 

FCSTP with fuzzy parameters (Chen et al., 2017; Halder et al., 2017). The 

use of Lagrange relaxation heuristics was applied to solve FCSTP in which 

there are more than one fixed charges associated with the transportation 

routes (Sanei et al., 2017). Metaheuristics are currently being utilized to 

solve NP-hard problem similar to the FCSTP as indicated earlier.  

As noted by some researcher metaheuristics, unlike classical heuristics, 

possess abilities to prevent optimization solutions from being stuck in 

local optima (Genove and Gulias, 2011; Fernandes et al., 2014). In addition, 

the multidimensional search patterns of metaheuristics make navigation 
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towards optimal or near-optimal solutions feasible. Metaheuristics, such 

as the Genetic Algorithm (GA), have been utilized either in their pure or 

hybrid forms with other improvement heuristics to solve various 

combinatorial problems such as those in the class of FCTP and FCSTP. 

Some works such as have shown how pure GA and hybrid GA have been 

applied to solve fixed charge problem variants (Perez-Salazar et al., 2015; 

Calvete et al., 2016; Guo et al., 2017; Hiassat et al., 2017; Yousefi et al., 

2018; Ghassemi and Hashemi, 2018). A group reserchers extended their 

previous GA model to solve an FCTP with the introduction of truckload 

constraints (Balaji et al., 2009). In this paper, we consider a variant of the 

FCSTP, referred to as the Fixed Charge Solid Location and Transportation 

Problem (FCSLTP).  

This problem seeks to integrate the facility location problem and the fixed 

charge solid transportation problem. These two problems are of different 

planning horizons ranging from long to short terms. Solving these 

problems independently might lead to suboptimal solutions. Therefore, an 

integrated solution will be necessary to prevent possible sub-optimality of 

the solutions. Furthermore, this problem is an extension of FCSTP, 

extended by the cost of facility location. Therefore, we implicitly classify 

this problem to fall in the NP-hard class of problems. We further propose 

a hybrid heuristic solution that uses the GA process to select a combination 

of feasible facility locations while allocation from the feasible locations is 

achieved using a constructive greedy heuristic. An improvement heuristic, 

which we have termed modified stepping stone algorithm, is used to 

further consolidate load distribution for cost reduction and improve the 

search for a better solution.  

In order to test the effectiveness (objective function) and efficiency 

(solution time) of our hybrid GA method, we compare our results with the 

solutions provided by CPLEX, a commercial solver. Section 1 consist of 

significance, motivation and existing research on the variants of STP and 

solution methods. This section is concluded with a gap analysis as shown 

in Table 1 below. Section 2 consists of model formulation for the variants 

of FCSTP and FCSLTP.  Section 3 provides a detailed explanation and 

illustration of the Hybrid heuristic considered.  Preliminary experiments 

and computation study are presented in section4. The experimentation 

and results obtained between the hybrid heuristic and CPLEX are 

compared.  

Section 6 summarizes the paper and provides future improvements to the 

hybrid heuristic. 

Table 1: Problem Gap analysis 

 

2. MODEL FORMULATION 

The FCSLTP is modelled as a mixed-integer linear programming problem 

consisting of 𝑚 feasible sources or locations, 𝑛 destinations or customers, 

and 𝑎  conveyances or transport sources. Our FCSLTP basically differs 

from the FCSTP discussed in that location costs, location capacities, route 

costs and route capacities are simultaneously used in determining 

whether locations will be open or closed when servicing customers (Sanei 

et al., 2017). Figure 1 further describes the FCSLTP. Moreover, our model 

formulation and assumptions considered are similar to those presented 

and rehashed in this paper (Oyewole and Adetunji, 2018). They 

introduced the FCSLTP and attempted to solve the model using CPLEX and 

Lagrange relaxation heuristic. The CPLEX solution outperformed Lagrange 

relaxation heuristic. However, this paper considers another heuristics 

which is a hybrid of metaheuristic and classical heuristics and compares 

the solution obtained with that of CPLEX. The FCSLTP seeks to minimize 

total transportation and location costs by determining the optimal 

allocations from selected open locations through open routes via a set of 

conveyances. In order to ensure comprehension of our FCSLTP 

formulation, we present the formulation of the FCSTP as described (Sanei 

et al., 2017). Subsequently, we present the formulation of our FCSLTP. 

 

Figure 1: Illustration of FCSLTP 

2.1 Model parameters 

 𝑖:  Index for sources or facility locations (warehouses, depots etc.) 

 𝑗: Index for destinations (customers, other warehouses etc.) 

𝑟: Index for conveyances (or Transportation mediums) 

𝑚: Number of sources  

𝑛: Number of destinations 

𝑎: Number of conveyances 

𝑐𝑖𝑟𝑗 : Variable cost of shipment from source 𝑖 through conveyance 𝑟 to 

destination 𝑗. 

𝑆𝑖  : Capacity at source 𝑖. 

𝐷𝑗  : Demand at Destination  𝑗. 

𝑇𝑟 : Capacity of conveyance  𝑟. 

𝐹𝑖 :  fixed charge for keeping a facility location open. 

𝐻𝑖𝑟𝑗 : Fixed cost (fixed charge) incurred for shipping from source 𝑖 through 

conveyance 𝑟 to destination 𝑗. 

2.2 Decision Variables 

𝑥𝑖𝑟𝑗: Quantity of products transported from source 𝑖 through conveyance 

𝑟 to destination 𝑗. 

𝑦𝑖  :    Variable indicating which facility location is opened. 

𝑧𝑖𝑟𝑗  : Variable indicating which conveyance means is utilized en route 

(𝑖, 𝑗 ). 

2.3 Objective function for the FCSTP  

min  ∑ ∑ ∑ 𝑐𝑖𝑟𝑗𝑥𝑖𝑟𝑗      + ∑ ∑ ∑ 𝐻𝑖𝑟𝑗𝑧𝑖𝑟𝑗   𝑛
𝑗=1

𝑎
𝑟=1

𝑚
𝑖=1   𝑛

𝑗=1
𝑎
𝑟=1

𝑚
𝑖=1                       (1)   

Subject to  

∑ ∑ 𝑥𝑖𝑟𝑗  𝑛
𝑗=1

𝑎
𝑟=1  ≤      𝑆𝑖              ∀  𝑖 = 1 … 𝑚                                                        (2) 

∑ ∑ 𝑥𝑖𝑟𝑗  𝑎
𝑟=1

𝑚
𝑖=1  =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                         (3)     

∑ ∑ 𝑥𝑖𝑟𝑗  𝑛
𝑗=1

𝑚
𝑖=1  ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                          (4) 

𝑥𝑖𝑟𝑗  ≥ 0      ∀  𝑖 = 1 … 𝑚 , 𝑟 = 1 … 𝑎 , ∀  𝑗 = 1 … 𝑛 , ∀                                              (5a) 

𝑧𝑖𝑟𝑗  =  {
1      𝑥𝑖𝑟𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ∀  𝑖 = 1 … 𝑚 , ∀ 𝑟 = 1 … 𝑎, ∀  𝑗 = 1 … 𝑛 ,                      (5b) 
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Expression (1) is the objective function. The first term is the route variable 

cost per conveyance type and the second term is the route fixed-charge 

cost per conveyance type. constraint (2) is the supply capacity constraint 

ensuring no supply preference for selected locations. constraint (3) is the 

demand constraint to be met at each destination. Constraint (4) is the 

conveyance capacity. Constraint (5a) refers to the non-negativity 

constraint for the continuous variables and constraint (5b) refers to the 

binary constraints for the route fixed charge requirement. 

2.4 Objective Function (minimum cost function) for FCSLTP: 

Minimize (𝑍)=  

∑ 𝐹𝑖  𝑦𝑖
𝑚
𝑖=1 +   ∑ ∑ ∑ 𝑐𝑖𝑟𝑗𝑥𝑖𝑟𝑗      + ∑ ∑ ∑ 𝐻𝑖𝑟𝑗𝑧𝑖𝑟𝑗   𝑛

𝑗=1
𝑎
𝑟=1

𝑚
𝑖=1   𝑛

𝑗=1
𝑎
𝑟=1

𝑚
𝑖=1            (6) 

Subject to  

∑ ∑ 𝑥𝑖𝑟𝑗  𝑛
𝑗=1

𝑎
𝑟=1  ≤      𝑆𝑖𝑦𝑖              ∀  𝑖 = 1 … 𝑚                                                    (7) 

∑ ∑ 𝑥𝑖𝑟𝑗  𝑎
𝑟=1

𝑚
𝑖=1  =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                        (8) 

∑ ∑ 𝑥𝑖𝑟𝑗  𝑛
𝑗=1

𝑚
𝑖=1  ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                         (9) 

𝑥𝑖𝑟𝑗  ≥ 0                     ∀  𝑖 = 1 … 𝑚 , ∀ 𝑟 = 1 … 𝑎  , ∀  𝑗 = 1 … 𝑛                   (10a) 

𝑧𝑖𝑟𝑗  = {
1      𝑥𝑖𝑟𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ∀  𝑖 = 1 … 𝑚 , ∀ , , 𝑗 = 1 … 𝑛 , ∀ 𝑟 = 1 … 𝑎            (10b) 

 

𝑦𝑖  = 0 𝑜𝑟 1            ∀  𝑖 = 1 … 𝑚                                                  (10c) 

 

Expression (6) is the objective or the cost function, which we seek to 

minimize. The first term computes the total facility location cost, the 

second term computes the total route variable cost and the third term 

computes the route total fixed charge. Constraint (7) is the supply capacity 

constraint of each facility location or sources. It also ensures that 

capacities of closed facilities are not utilized. Constraint (8) is the demand 

constraint indicating the destination demands should be met. Constraint 

(9) is the conveyance capacity constraint. It ensures that capacities of 

selected conveyances are not exceeded. Constraint (10a) refers to the non-

negativity constraint for the continuous variables. Constraint (10b) is 

binary indicating whether or not there is shipment using a conveyance 

along the particular route.  Constraint (10c) is binary indicating whether a 

facility is opened or not. 

3. GENETIC ALGORITHM 

The Genetic Algorithm (GA) is a multi-dimensional search strategy defined 

as a framework that imitates the evolutionary principle of nature to 

provide solutions to NP-hard combinatorial problems (Fernandes et al., 

2014). The GA has also been viewed as a probabilistic or stochastic search 

technique due to the probability rates normally associated with the 

genetic operations involved in producing solutions during the search 

process. As noted by the successful implementation of the GA depends on 

the user-defined solution representations, initialization, genetic 

operations and terminating conditions (Jawahar et al., 2012; Perez-Salazar 

et al., 2015). The solution representation basically is concerned with how 

to encode and decode the feasible solution of the combinatorial problem 

taking part in the genetic operations. These feasible solutions are usually 

referred to as chromosomes. In addition, the representation of each 

individual variable type making up the chromosomes (i.e. genes) has to be 

properly captured. This is because optimization variables could either be 

continuous, binary or integer.  The representation types used have been 

noted by several authors to determine how sensitive the GA will be in 

converging to the solution desired. The Genetic operations consist of the 

chromosome selection method, crossover operation and mutation 

operation used to ensure necessary diversity in the search process. The 

stages of the GA implementation include initialization, crossover, mutation 

and termination. 

3.1 Initialization 

The initialization conditions include the determination of the desired 

fitness function (objective function) for the GA procedure, chromosome 

representation, initial population size and the terminating condition of the 

GA, including the number of generations.   

3.2 Crossover operation 

The aim of the crossover is to generate and promote the replication of 

good solutions (chromosomes) while rejecting the bad ones. Before 

crossover is performed, chromosomes are selected using some selection 

probabilities. The roulette wheel technique is a popular selection 

technique used in literature to achieve the selection (Jawahar and Balaji, 

2009; Ojha et al., 2010; Pérez-Salazar et al., 2015). The crossover 

operation ensures the reproduction of new offspring or children solution 

from parent solutions.  Different cross over operation types have been 

discussed in the literature as noted (Jawahar and Balaji, 2009). These are 

either based on a single point or two-point crossover such as the partially 

mapped crossover and the ordinal mapped crossover.  

3.3 Mutation operation 

The mutation operation involves perturbation of some of the genes 

(variables) of a chromosome-based on some assigned probabilities known 

as the mutation rate. Genes are also randomly selected using a user-

defined mutation rate. The mutation operation or gene replacement 

essentially gives the GA its power of arriving at other new solutions not 

possible with the crossover and have the potential of being better than 

existing solutions. 

3.4 Termination 

Terminating conditions usually involve the stopping criteria normally 

employed in optimization problems such as the number of desired 

iterations and optimization time desired. For the GA the number of 

generations employed can also be utilized as a stopping criterion. 

3.5 Solution Representation 

Choosing a suitable representation for the candidate solutions of the 

original problem has been considered by several authors to be based on 

the optimization problem structure and the ease of performing the genetic 

operations of the GA. The matrix and vector (binary) representation were 

discussed (Vignaux and Michalewicz, 1991).  Priority based encoding was 

proposed by (Gen et al., 2006). This was to prevent likely infeasibility 

during genetic operations observed with the prüfer number technique of 

representing chromosomes discussed by (Gottlieb et al., 2001).  Antony et 

al. [26], while discussing solutions to a 𝑚-number of sources and 𝑛 -

number of destinations FCTP, underscored the differences between the 

matrix, permutation, prüfer number and direct representation (Antony et 

al., 2011). The differences were based on the number of genes involved in 

the chromosomes. They showed the matrix representation as possessing 

the highest number of genes representing the transportation problem 

which is  𝑚 ×  𝑛 , while the prüfer number had the least i.e.  𝑚 +  𝑛 − 2.  A 

hybrid chromosome representation that presents both the continuous and 

the binary variables of the original mixed-integer problems as an array 

was discussed (Perez-Salazar et al., 2015; Hiassat et al., 2017).  

 

In this paper, a vector of binary numbers is used to represent the facility 

locations while a matrix of continuous numbers is used to represent the 

candidate solution, which is essentially the allocated quantity from the 

facility locations (sources) and to the points of demand (destinations). The 

facility location vectors are encoded as the GA chromosomes and 

manipulated through the various GA operations while the constructive 

greedy heuristics and improvement modified stepping stone heuristics 

work on the allocation matrix. Based on the result from the GA operations 

on the facility location vector (as shown in Figure 2) the allocations 

(shown in Figure 3) are made. A typical matrix representation used for a 

sample feasible solution to an original problem with 3-candidate facility 

locations, 4-demand destinations and two conveyances is shown in Figure 

3. The facility location and route fixed charges are incurred when the 

continuous variable part of equation (1) are non-zero. 
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Figure 2: Sample chromosome representation for an FCSLTP with 3 

sources 

 

Figure 3: Typical candidate solution representation for a 3-source, 4 –

destination and 2- conveyance problem 

3.6 Initialization 

3.6.1 Fitness function 

The fitness function to be used in the GA is the objective function of the 

original problem.  This is same as equation (1) above.   

3.6.2 Initial population and candidate feasible solution generation  

Given the location fixed cost 𝐹𝑖  of dimension ( 𝑚), route fixed cost 𝐻𝑖𝑟𝑗 of 

dimension (𝑚 × 𝑎 ×  𝑛), variable cost 𝑐𝑖𝑟𝑗 of dimension (𝑚 × 𝑎 ×  𝑛),  

population size (𝑝) and number of generation (𝑔), the generation of the 

candidate feasible solutions to the original problem ( 𝑐1 … 𝑐𝑝) and the 

initial population of chromosomes are described below and illustrated in 

Figures 4 and 5 below respectively. 

1. Random generation of the combination of facilities or locations that 
possess sufficient capacity to meet demand. We select 𝑦𝑖  ( 𝑖 = 1 … 𝑚)  

such that the feasibility   ∑ 𝑆𝑖  𝑦𝑖
𝑚
𝑖=1  ≥ ∑ 𝐷𝑗  𝑛

𝑗=1  is checked and 

uniqueness of each combination of facilities is ensured. A matrix 

(𝑚 ×  𝑝)  termed 𝑃𝑜𝑝𝐶ℎ𝑟𝑜𝑚  is created to store each feasible 

combination of the facilities. The matrix 𝑃𝑜𝑝𝐶ℎ𝑟𝑜𝑚  is also referred to 

as the population of chromosomes in this paper and represented in 

Figure 4 below.  

2. Creation of a Relaxed Average Variable Cost (RAVC) matrix of 

dimension (𝑚 × 𝑎 ×  𝑛). This is based on the integration of the route 

fixed cost, the variable cost of the problem and minimum of all 

capacities and it is used to allocate capacities. This is similar to the 

least equivalence variable cost discussed by Jawahar, Balaji [22]. The 

𝑅𝐴𝑉𝐶 is stated as: 

𝑅𝐴𝑉𝐶 (𝑖𝑟𝑗) =  
 𝑅𝑜𝑢𝑡𝑒 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 (𝐻𝑖𝑟𝑗) 

min(𝑆𝑖,𝐷𝑗,𝑇𝑟)
+ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 (𝑐𝑖𝑟𝑗)                        (11) 

3. Creation of the matrix of candidate feasible allocation (Illustrated with 

Figure 5). We created a three-dimension matrix of dimension (𝑚𝑎 ×

𝑛 ×  𝑝). This is called the candidate feasible solution allocation matrix 

and termed CFS𝑝.  The procedure for creating CFS𝑝 is stated below. 

(a) From the earlier 𝑃𝑜𝑝𝐶ℎ𝑟𝑜𝑚  of feasible combinations of facilities 

(chromosomes), select each feasible chromosome (𝑚 ) from the 

(𝑝) rows of population. 

(b)  Compute the RAVC as stated above to obtain the matrix(𝑚 ×

𝑎 ×  𝑛). 

(c) Apply the constructive greedy heuristic (illustrated with Figure 

6) to make the initial allocation. The greedy heuristic utilizes the 

𝑚 rows of the matrix obtained in step (3a) and the RAVC 

computed in step (3b) to allocate into the first layer of  CFS𝑝 

with dimension (𝑚𝑎 × 𝑛 ×  1). This is termed CFS1 

(d) Use the improvement heuristic (the modified stepping stone 

algorithm) (illustrated in Figure 7). This is based on the actual 

route fixed cost and variable cost matrix, to improve 

allocations obtained in step(3c) above.  This gives the final 

allocation for  the initial candidate feasible CFS1.  

(e) Repeat step (3a) to (3d) for all the candidate feasible solution 

( 𝑐1 … 𝑐𝑝)  to obtain CFS𝑝. 

4. Computation of the candidate feasible solution fitness function 

using the actual cost parameters and the allocation of  CFS𝑝 obtained 

in step (3e) above. 

 

Figure 4: Sample populations of Chromosomes (𝑚 ×  𝑝) 

 

Figure 5: Candidate feasible solution allocation matrix( 𝐂𝐅𝐒𝐩) 

3.6.3 Greedy heuristic  

This utilizes the RAVC to allocate demand such that the source, transport   

and demand capacities are not exceeded. This is further illustrated in 

Figure 6. 

 

Greedy allocation heuristic 

For every entry of demand, 𝒋 = 𝟏: 𝒏 ,  

  find the minimum RAVC from (𝒌 = 𝟏 ∶ 𝒎𝒂) as (𝒌, 𝒋) 

  locate corresponding  source  𝒊 =  𝟏: 𝒎  and 𝒓 =  𝟏: 𝒂  to  selected 

(𝒌, 𝒋)  

 While demand (𝒋)  >  𝟎 

  If   𝑻𝒓 >  𝟎  and  𝑺𝒊 >  𝟎  

        𝒙𝒊𝒓𝒋 = allocation =  𝐦𝐢𝐧 (𝑺𝒊, 𝑫𝒋, 𝑻𝒓) 

  

                              Subtract  𝒙𝒊𝒓𝒋  from  𝑫𝒋 

        Subtract  𝒙𝒊𝒓𝒋  from 𝑺𝒊 

        Subtract  𝒙𝒊𝒓𝒋  from 𝑻𝒓 

                      Else  

                                Move to the next minimum RAVC (𝒌, 𝒋) 

 

                      End if 

    Update 𝒋: 𝒋 = 𝒋 + 𝟏 

End for 

Figure 6: Greedy heuristic to populate Initial solution 

3.6.4 Improvement Heuristic (Modified stepping stone method) 

The modified stepping stone method is done in order to check for possible 

cost savings through route fixed cost and variable cost trade-off by either 

eliminating route fixed costs and/or possible reduction in variable costs 

subject to capacity allocation. A set of acronyms are defined below in the 

modified stepping stone method for comprehension purposes and 

presented below. 
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𝑖, 𝑟 𝑎𝑛𝑑 𝑗  are already defined under section 2.1 

(𝑚, 𝑛, 𝑎 ) is as stated in the original problem in section 2.1   

Define source indices  (𝑖 𝑎𝑛𝑑 𝑢):    𝑖 <  𝑢 ≤   𝑚  

Define destination indices   (𝑗 𝑎𝑛𝑑 𝑝) ∶    𝑗 <   𝑝 <   𝑛  

Define conveyance indices   (𝑟 𝑎𝑛𝑑 𝑣):   𝑟 <   𝑣 <   𝑎 

 𝑥𝑖𝑟𝑗 => variable allocation at positon (𝑖𝑟𝑗). (Similarly for 𝑥𝑖𝑟𝑝 , 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗 ) 

𝐻𝑖𝑗𝑟  => Route fixed cost at position (𝑖𝑟𝑗).(Similarly for 𝐻𝑖𝑟𝑝 , 𝐻𝑢𝑣𝑝 , 𝐻𝑢𝑣𝑗 ) 

min_alloc => Minimum of allocation.  

variable_cost change at position (𝑖𝑟𝑗)= (𝑐𝑖𝑟𝑗 + 𝑐𝑢𝑣𝑝 )  − ( 𝑐𝑖𝑟𝑝 +  𝑐𝑢𝑣𝑗). 

(based on  𝑥𝑖𝑟𝑗 , 𝑥𝑖𝑟𝑝 , 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗     and Illustrated in Figure 7)  

The improvement heuristic is illustrated in Figure 7, while an Illustration 

of the selection of variables for the improvement heuristic( modified 

stepping stone consolidation)  is presented in Figure 8 . 

Improvement Heuristic (Modified stepping stone method) 

For every source, transport means  (𝑖 = 1, 𝑟 = 1) 𝑡𝑜 (𝑖 = 𝑚, 𝑟 = 𝑎) 

    Source = source 1 

    For every destination 𝑗 = 1: 𝑛 − 1,    if 𝑥𝑖𝑟𝑗  >  0  

          Source, Destination = source1, dest 1 

         (# Source, Destination combination  is explained in Figure 7 below 

#) 

          If for any destination 𝑝 > 𝑗,   𝑥𝑖𝑟𝑝 >  0  

              Source, Destination = source 1, dest 2 

              If for any source (𝑢 > 𝑖 𝑎𝑛𝑑 𝑣 >= 𝑟) OR source (𝑢 >=

𝑖 𝑎𝑛𝑑 𝑣 > 𝑟),   𝑥𝑢𝑣𝑝 >  0   

                 Source, Destination = source 2, dest 2 

                     If  𝑥𝑢𝑣𝑗 > 0  

                        Source, Destination = source 2, dest 1 

Find  𝑚𝑖𝑛_𝑎𝑙𝑙𝑜𝑐 =  𝑚𝑖𝑛 (𝑥𝑖𝑟𝑗 , 𝑥𝑖𝑟𝑝, 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗) 

                        If 𝐻𝑖𝑟𝑗 < variable_cost change (check 1) THEN 

                             (consolidation step1) 

                             𝑥𝑖𝑟𝑗 =  𝑥𝑖𝑟𝑗 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                             𝑥𝑢𝑣𝑝 =  𝑥𝑢𝑣𝑝 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                            

                             𝑥𝑖𝑟𝑝 =  𝑥𝑖𝑟𝑝 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

                             𝑥𝑢𝑣𝑗 =  𝑥𝑢𝑣𝑗 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

(Repeat check1 for fixed costs positions 𝐻𝑖𝑟𝑝, 

𝐻𝑢𝑣𝑝 and 𝐻𝑢𝑣𝑗  and  apply   pattern of 

consolidation step1 if true) 

 

                         ELSE  If  𝐻𝑖𝑟𝑗 > variable_cost change  (check 2)THEN 

                                 (consolidation step2) 

                              𝑥𝑖𝑟𝑝 =  𝑥𝑖𝑟𝑝 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                              𝑥𝑢𝑣𝑗 =  𝑥𝑢𝑣𝑗 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

                              𝑥𝑖𝑟𝑗 =  𝑥𝑖𝑟𝑗 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                              𝑥𝑢 𝑣𝑝 =  𝑥𝑢 𝑣𝑝 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐     

    

(Repeat check2 for fixed cost positions  

𝐻𝑖𝑟𝑝, 𝐻𝑢𝑣𝑝 and 𝐻𝑢𝑣𝑗     And apply  pattern  of 

consolidation step2 if true) 

 

  Else   (no improvement for cost position  𝑖𝑟𝑗) 

Figure 7: Improvement heuristic (modified stepping stone procedure). 

 

 

Figure 8: Selection of variables for load consolidation 

 

3.7 Generation of New Population 

The generation of new chromosomes is discussed in this section. We put 

an emphasis on the best fit solution over the weak solutions during the 

crossover and mutation operations as also indicated by in their solution 

(Jawahar and Balaji, 2009). As described in section 3.2 the generation of 

the initial population is done by generating a combination of facilities such 

that ∑ 𝑆𝑖  𝑦𝑖
𝑚
𝑖=1  ≥ ∑ 𝐷𝑗  𝑛

𝑗=1  The random search is implemented for the 

binary facility location term in this paper and stored in a matrix of 

dimension (𝑚 ×  𝑝) as shown in Figure 4 above. 

3.7.1 Inputs for new population 

The new population generation function takes as input the following: 

a) The parent matrix (𝑚 ×  𝑝) generated in section 3.2 

b) A vector of sort index of chromosomes (𝑚 ×  𝑝)   in increasing 

order of cost for each chromosome (dimension𝑝). 

c) The crossover rate (𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒) 

d) The mutation rate (𝑚𝑢𝑡 𝑟𝑎𝑡𝑒) 

e) The source and demand capacities corresponding to the matrix 

(𝑚 ×  𝑝). 

3.7.2 Genetic operations procedure 

The matrix of the old facilities opened (parent) contains 𝑝 chromosomes, 

each chromosome being a set of binary values indicating which supply 

points were opened or closed. This matrix was crossed over and mutated 

to create a new population on which the allocation and improvement 

heuristics were applied. This cycle was repeated until the numbers of 

generations (𝑔)  were completed.  

This procedure is described below: 

1. Determine the number of chromosome of the old population to 

keep from the crossover rate (𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒). 

2. Populate the discarded chromosomes to build up a matrix of a 

new population of size (𝑚 ×  𝑝) using the procedure below. 

a. Copy the retained chromosomes into the relevant positions 

in the new population matrix, keeping the least cost 

chromosome in position 1. 

b. Use rank based roulette wheel selection (as shown beloow 

in Figure 9) to select the two mating chromosomes among 

the retained chromosomes. The rank-based roulette wheel 

selects two chromosomes to be used for crossover from the 

chromosomes retained from the population. It receives as 

input a population of chromosomes ranked based on fitness 

function from the best ranked in the first position to the 

worst ranked in the last position. 

c. Randomly generate the crossover point for the mating 

chromosomes as described below. 

d. Perform crossover (described blelow in Figure 10) and 

store the two new offsprings in the next two positions in the 

new population matrix. 

e. Repeat step (d) until the new population matrix is fully 

constructed 

3. Use the mutation rate to determine the number of genes to mutate 

by flipping the binary value (0 𝑡𝑜 1 𝑜𝑟 1 𝑡𝑜 0). This is described in 

section 3.3.4 below. 

4. Randomly generate the two index positions to mutate in the new 

matrix and flip the gene in the location while preserving the least 

cost gene in position 1 unchanged 

5. For every chromosome in position 2 till the last, check for 

feasibility (section 3.3.5) 

a. If the chromosome is not feasible, randomly locate a 

position that is closed and open until the chromosome has 

a number of opened sites that is feasible for demand 

allocation 

6. Once new allocation matrix is complete, pass matrix to the greedy 

algorithm to allocate demand and consolidate the allocation using 

the modified stepping stone algorithm 

7. Repeat all steps until the number of generation is complete. 
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Rank based roulette selection 

rank = ranking of chromosome in the population 

𝑝 = population size 

cumProb = sum of probability up until the current member of the 

population, initialised to zero 

sumRank = sum of the rank of all members initialised to zero 

chrom 1 =   First chromosome selected for crossover 

chrome 2 =  Second chromosome selected for crossover 

 

for all members of population, 

    sumRank = sumRank  + rank of chromosome 

end for 

 

for all members of population, 

    cumProb = cumProb + ((𝑝 – rank + 1) / sumRank)     

end for 

 

Generate the mating chromosomes       

number = random between 0 and 1 

start from first member of population 

while number =< cumProb  

then chrom 1 =  current chromosome 

go to next member         

end while  

Repeat for chrom 2 what was done for chrom 1 

 

Return chrom 1 and chrom 2 

Figure 9: Rank based roulette selection 

3.7.3 Crossover operation 

For the crossover operation, two chromosomes are selected as a pair and 

a crosspoint is randomly generated for the pairwise interchange. A 

description of the algorithm for this is presented in the Figure 10. 

 

Figure 10: Description for Crossover operation 

3.7.4 Mutation operation 

In this we discuss the mutation operation performed which is similar to 

the description presented in section 3.  The number of genes to mutate in 

the population is determined based on a mutation rate.  Following this, 

selected genes are interchanged with other selected genes in the 

population.  This is further described in Figure 11. 

 

Figure 11: Description of mutation operation 

3.7.5 Check for feasibility 

This section checks every chromosome representing a combination of 

opened sites out of all possible sources to ensure feasibility. It accepts as 

inputs the vector of demand at each destination, vector of supply capacity 

at each source and the matrix of opened sites. This is presented in Figure 

12. 

 

Figure 12: Description of chromosome feasibility 

Figure 13 below shows a summary of the working procedure of the HA 

 

Figure 13: Hybrid Algorithm flow chat 

4. COMPUTATION STUDY  

We did the computational study in two stages. The first stage is 

preliminary experimentation while the second is the main 

experimentation. The preliminary experimentation was performed to 

obtain necessary parameters to effectively implement the HA. In addition, 

it was done to identify the most influential parameters of the HA by 

observing the relative effectiveness. The parameters such as the 

population size (𝒑), number of generations (𝒈), crossover rate 

(𝒄𝒓𝒐𝒔𝒔 𝒓𝒂𝒕𝒆) and mutation rate (𝒎𝒖𝒕 𝒓𝒂𝒕𝒆) implemented, have been 

shown in the literature to affect the convergence of a GA solution. Studies 

in literature have shown that important parameter settings for a GA to be 

based on tuning the population size and number of generations (Ho and Ji, 

2005; Fernandez wt al., 2014; Guo et al., 2017). In the main 

experimentation, we assess the quality of solutions of the HA and CPLEX. 

This is based on measures of performance described in section 5.0. 

4.1 Preliminary experimentation  

In this section the population size, number of generation, crossover rate 

and mutation rate are varied. The problem sizes have been stated in the 

order of (𝑚 × 𝑛 × 𝑎). Where 𝑚 = number of sources (or locations), 𝑛 = 

number of destinations or demand points and 𝑎 = number of transport 

sources or conveyances. In conducting parameter tunings for our HA, 
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problem sizes (5×8×2, 7×10×2, 9×12×2 and 15×30×2) which represent a 

sample of small to medium-sized problems comprising our test data were 

selected. Population sizes considered for the smaller problem were 

smaller than the medium sized problem to account for the uniqueness of 

solution required to populate each population size.  In both instances 

initial crossover and mutation rates were randomly selected and kept 

constant while the population size and number of generations were varied 

in an increasing order. The population size and number of generations that 

showed a quick convergence were retained. Similarly, the best performing 

population size and number of generations were kept constant while the 

crossover rate and mutation rate were progressively varied. Tables 2 

shows the parameter variations and convergence of the test problem sizes 

utilized. The values of the minimum cost obtained for the first and Last 

iterations are recorded as MinCost(first) and MinCost(last) respectively.  

 

Table 2: Paramter tuining results. 

 Problem 

Size 

 Problem 

Characteristic

s1 

Problem 

Characteristic

s2 

MinCost 

first  

MinCost 

Last  

5X5X2 𝑝  𝑔 
  

10 8 27689 27058 

20 20 27024 27006 

30 50 27006 27006 

𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 𝑚𝑢𝑡 𝑟𝑎𝑡𝑒  𝑝 =  30  𝑔 = 50 

0.7 0.3 28059 27006 

0.3 0.3 27342 27006 

0.3 0.1 27024 27006 

8X8X2 𝑝 𝑔 
 

 

10 8 27696 26782 

20 20 27266 26782 

30 50 26810 26782 

 𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 𝑚𝑢𝑡 𝑟𝑎𝑡𝑒 𝑝 =  30  𝑔 = 50 

0.7 0.3 26810 26782 

0.3 0.3 26782 26782 

0.3 0.1 26782 26782 

9X12X2 𝑝 𝑔 
  

20 8 37694 36478 

50 50 37414 35826 

50 100 36611 35826 

𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 𝑚𝑢𝑡 𝑟𝑎𝑡𝑒 𝑝 =  30  𝑔 = 50 

0.7 0.3 37004 35826 

0.3 0.3 37401 35826 

0.3 0.1 36608 35826 

15X30X

2 

𝑝 𝑔 
  

20 8 77240 71408 

50 50 75100 70927 

50 100 73084 70927 

𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 𝑚𝑢𝑡 𝑟𝑎𝑡𝑒 
  

0.7 0.3 73915 70927 

0.3 0.3 75150 70927 

0.3 0.1 75085 70927 

 

Results obtained indicate that the parameter combinations all converged 

to the same minimum cost except in the cases of (=10 and  𝑔 =8), ( 𝑝 =20 

and  𝑔 =8) ( 𝑝 =10 and  𝑔 =8). Some parameter combinations obtained 

lower minimum cost from the initial generation (iteration). This possibly 

could indicate a quick convergence when using such parameter 

combinations for the HA. For the test problem sizes (5×8×2) and 

(7×10×2), the results showed that the population size (30), number of 

generations (50), crossover rate (0.3) and mutation rate (0.1) converged 

rather quickly for the minimum cost value compared to other parameters 

used. Results of the problem sizes (9×12×2) and (15×30×2) showed that 

population size (50), number of generations (100), crossover rate (0.5) 

and mutation rate (0.1) converged more quickly than with other 

parameters. In summary, the population size and number of generations 

seemed to be very effective in determine the final minimum cost value 

obtained. 

 

4.2 Data Generation for experimentation 

A modification to experimental data was used to test the different solution 

methods (Sanei et al., 2017).  We extended their benchmark data to 

capture the cost of facility location which was not considered in their 

model.  For the facility location cost, we have used the method of 

generating facility location cost instances from the supply capacities 

considered in facility location literature as used (Gadegaard et al., 2017; 

Fishetti et al., 2016; Guastaroba and Speranza, 2014). In this method, the 

facility location cost is calculated using 𝐹𝑖 = 𝑈(0,90) +  √𝑆𝑖    𝑈(100,110). 

Uniformly distributed data randomly generated as integers in a unit 

square coordinate U [a, b] were considered for the experiments. The letter 

“a” refers to the lower cost limit and “b” is termed the upper cost limit. A 

total of 45 problems instances across 9 different problem sizes were 

considered for the main experimentation. We have termed problem size 

number (1) to (4) and (5) to (9) as small and medium sized problems 

respectively.   A summary of the Problem sizes considered and the 

parameters used for data generation are given in the Tables3 and 4 

respectively.  

 

Table 3: Parameter distribution used for computations 

Problem Size No. 
Problem Size 

𝒎 × 𝒏 × 𝒂 
No of instances 

1 
2 
3 
4 
5 
6 
7 
8 
9 

5×5×2 
5×8×2 

7×10×2 
8×8×2 

9×12×2 
10×10×2 
10×20×2 
15×30×2 
30×30×2 

5 
5 
5 
5 
5 
5 
5 
5 
5 

 

Table 4: Parameter distribution used for experimentation 
Parameter Distribution  
𝑺𝒊     U(200, 400) 
𝑫𝒋    U(50, 100) 

𝑻𝒓     U(800, 1800) 
𝒄𝒊𝒋𝒓   U(20, 150) 

𝑯𝒊𝒋𝒓  U(200, 600) 

𝑭𝒊 = 𝐔(𝟎, 𝟗𝟎) + √𝑺𝒊 𝑼(𝟏𝟎𝟎, 𝟏𝟏𝟎)   

𝑴𝒊𝒋𝒓 = 𝐦𝐢𝐧(𝑺𝒊, 𝑫𝒋, 𝑻𝒓) 

4.3 Solution methods 

We have utilized the IBM CPLEX as a solution method in this paper. IBM 

CPLEX utilizes the conventional branch and cut algorithm and also 

implements a dynamic search algorithm. According to the IBM reference 

manual, the dynamic search algorithm basically uses the Branch and Cut 

algorithm with heuristics for quick termination of some nodes explored as 

the optimization technique (Studio, 2016). It is also indicates that the 

dynamic search algorithm consists of LP relaxation, branching, cuts and 

heuristics. At the default settings, CPLEX decides whether to provide 

solution using the conventional branch and cut or the dynamic search 

algorithm based on the model formulation (Studio, 2016). We have used 

the IBM CPLEX   12.8 dynamic search as a solution method to the original 

problem. This can imply a possible conventional Branch and Cut or 

dynamic search could be used by CPLEX to find a solution. Our HA was 

coded using Matlab 7.4.0.  Based on the results from the preliminary 

experimentation, the HA was computed with population size (30), number 

of generations (50), crossover rate (0.3) and mutation rate (0.1) for the 

small problem sizes. For The medium problem sizes, the HA was computed 

with population size (50), number of generations (100), crossover rate 

(0.5) and mutation rate (0.1).  The Solution methods were implemented 

on a Windows 8.1 Laptop with 6GB RAM and a processor speed of 2.5GHz  

5. EXPERIMENTATION AND DISCUSSION OF RESULTS 

The performance of each solution method was determined under the 

following test categories. 

a)  A preliminary experimentation to determine the HA parameters for 

the main experimentation. This was computed in section 4.1 above. 
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b) Mean of each problem size. This was calculated based on effectiveness 

and efficiency of each solution method. Our mean value was expressed 

with the notations: 𝐶𝑃𝐿𝐸𝑋 𝑚𝑒𝑎𝑛 and 𝐻𝐺𝐴 𝑚𝑒𝑎𝑛. 

𝐶𝑃𝐿𝐸𝑋 𝑚𝑒𝑎𝑛 =  
∑ 𝐶𝑃𝐿𝐸𝑋  𝑆𝑀𝑖

5
𝑖=1

5
        𝑜𝑟 

𝐻𝐺𝐴 𝑚𝑒𝑎𝑛 =    
∑ 𝐻𝐺𝐴  𝑆𝑀𝑖

5
𝑖=1

5
 

 

𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒 

 

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀  =>    𝐶𝑃𝐿𝐸𝑋 𝑚𝑖𝑛𝐶𝑜𝑠𝑡  𝑜𝑟  𝐶𝑃𝐿𝐸𝑋 𝑡𝑖𝑚𝑒 

𝐻𝐺𝐴 𝑆𝑀  =>   𝐻𝐺𝐴 𝑚𝑖𝑛𝐶𝑜𝑠𝑡  𝑜𝑟  𝐻𝐺𝐴 𝑡𝑖𝑚𝑒 

 

The mean values give an indication of the problem size effectiveness or 

efficiency 

 

c) Instance and mean gap computation.  This was also calculated based 

on the effectiveness and efficiency of each solution method. The 

Instance and mean gap computation were computed as percentages 

respectively. These were expressed with the notations % gap i and 

% gap mean respectively. 

  

% gap i = (
𝐻𝐺𝐴 𝑆𝑀 𝑖 − 𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑖

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑖
) × 100 

 

% gap mean = (
𝐻𝐺𝐴 𝑆𝑀 𝑚𝑒𝑎𝑛 − 𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑚𝑒𝑎𝑛

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑚𝑒𝑎𝑛

) × 100 

 

𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒 

 

Other notation are as previously indicated in (b) above. 

 

We state that % gap i   or   % gap mean  values obtained can either be zero, 

positive number or negative number. A zero value indicates equivalent 

performance from both methods. A positive value indicates that CPLEX 

obtained better results. A negative value indicates that the HA obtained 

better results.  The results obtained for each of the problem instances 

based on our defined measures of effectiveness, and efficiency are 

presented in Table 5 below. The values obtained for the individual cases 

and the categorical averages are presented next. We start with the 

instance observations in Table 5, followed by the problem size averages in 

Table 9.  

 

Table 5: Problem instance effectiveness, efficiency and % gap i 

Problem Size Instance no 
𝑪𝑷𝑳𝑬𝑿 

𝒎𝒊𝒏𝑪𝒐𝒔𝒕 
𝑯𝑮𝑨 

𝒎𝒊𝒏𝑪𝒐𝒔𝒕 
𝑪𝑷𝑳𝑬𝑿 

𝒕𝒊𝒎𝒆 
𝑯𝑮𝑨 
𝒕𝒊𝒎𝒆 

% 𝐠𝐚𝐩 𝐢  (Min 
Cost) 

% 𝐠𝐚𝐩 𝐢  (Time) 

5X5X2 1 18417.92 18417.92 1.14 0.13 0.0% -88% 

  2 18801.22 18534.22 1.12 0.13 -1.4% -88% 

  3 15369.09 21830.55 1.12 0.13 42.0% -89% 

  4 18828.75 23005.75 1.13 0.13 22.2% -89% 

  5 17090.47 16662.33 1.13 0.12 -2.5% -89% 

5X8X2 1 31320.91 31320.91 3.06 0.17 0.0% -94% 

  2 26301.38 30143.11 3.00 0.17 14.6% -94% 

  3 24209.66 31825.38 3.02 0.16 31.5% -95% 

  4 25539.24 25539.24 3.05 0.17 0.0% -94% 

  5 25864.92 25798.92 3.01 0.17 -0.3% -94% 

7X10X2 1 34676.97 34806.92 4.71 0.20 0.4% -96% 

  2 34760.30 33612.17 4.57 0.20 -3.3% -96% 

  3 32667.86 34587.04 4.53 0.23 5.9% -95% 

  4 36182.85 35841.88 4.72 0.20 -0.9% -96% 

  5 31334.72 31214.63 4.54 0.20 -0.4% -96% 

8X8X2 1 26952.66 26902.27 2.96 0.16 -0.2% -95% 

  2 26434.64 25816.64 2.97 0.18 -2.3% -94% 

  3 23830.67 23830.67 2.94 0.18 0.0% -94% 

  4 27032.24 27225.24 2.93 0.16 0.7% -95% 

  5 25864.92 25316.20 2.96 0.17 -2.1% -94% 

9X12X2 1 39844.21 37944.21 6.52 1.09 -4.8% -83% 

  2 35472.49 36024.36 6.61 1.06 1.6% -84% 

  3 39697.67 43278.10 6.88 1.11 9.0% -84% 

  4 41005.10 42701.06 6.70 1.04 4.1% -84% 

  5 40125.84 40749.84 6.53 1.03 1.6% -84% 

10X10X2 1 30471.92 30411.76 4.67 0.89 -0.2% -81% 

  2 28252.39 28252.39 4.82 0.99 0.0% -79% 

  3 35462.65 34160.77 4.63 0.88 -3.7% -81% 

  4 27648.69 27648.69 4.67 0.90 0.0% -81% 

  5 29211.92 29496.92 4.72 0.95 1.0% -80% 

10X20x2 1 64045.09 65361.83 18.00 1.77 2.1% -90% 

  2 57654.61 58505.61 17.40 1.63 1.5% -91% 

  3 62724.33 66508.88 18.19 1.56 6.0% -91% 

  4 63389.91 67396.36 18.12 1.79 6.3% -90% 

  5 68527.51 74904.08 17.90 1.81 9.3% -90% 

15X30X2 1 82136.32 93036.10 54.26 2.62 13.3% -95% 

  2 85684.45 87040.73 56.17 2.56 1.6% -95% 

  3 85515.94 89097.15 55.61 2.59 4.2% -95% 

  4 81937.51 81588.46 55.20 2.71 -0.4% -95% 

  5 83554.61 89640.24 55.46 2.66 7.3% -95% 

30X30X2 1 76649.71 75140.45 59.25 2.83 -2.0% -95% 

  2 81897.82 82452.20 54.88 2.94 0.7% -95% 

  3 81475.84 81725.59 64.07 2.92 0.3% -95% 

  4 78941.52 79702.55 57.16 2.74 1.0% -95% 

  5 88615.06 89680.65 57.33 2.95 1.2% -95% 
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5.1 Observations on CPLEX and HA minimum cost results 

Based on our effectiveness measure of performance, CPLEX should 

expectedly obtain better results than the HA. This is because of the 

conventional Branch and Cut implemented by CPLEX. The Branch and Cut 

has been noted to be an exact algorithm that can generate optimal 

solutions like Branch and Bound (Wolsey et al., 1998).  Since CPLEX uses 

the branch and cut algorithm, we can expect that the solution provided by 

CPLEX should be at least as good as that provided by our HA algorithm. 

However, the use of some other search heuristics to speed up the 

convergence of CPLEX in its dynamic search function as indicated can lead 

to some less superior results than the HA (Studio, 2016). This is possible 

because of some nodes that could have been fathomed away, especially in 

instances where there are many nodes at a given search level with close 

possible final solution in their exploration, whose exploration may be 

considered not to hold so much promise but can significantly increase the 

time of convergence of the solution. We further present an instance of 

problems solved (Table 6 below) and show the actual allocations of 

randomly selected instances (Tables 7 and 8) where the HA seemed to 

obtain marginally better results than the CPLEX. The Feasibility of both 

solutions method is also observed. 

 

Table 6: A Sample 5X5X2 Problem 
 

1963.966 1883.348 2040.107 1682.118 2103 
 

 

311 340 378 227 361 
 

 

89 57 90 71 56 
 

 

1736 1488 
    

  𝑐𝑖1𝑗 

𝑖 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5  

1 58 36 44 146 70 𝑟 = 1 

2 100 42 98 89 97 

3 83 70 118 50 114 

4 90 144 93 49 26 

5 142 45 133 98 24 

𝑖 
 

𝑐𝑖1𝑗 

1 101 25 96 84 94 𝑟 = 2  

2 45 33 74 97 104 

3 27 55 127 32 67 

4 51 114 44 45 22 

5 132 22 109 87 83 

𝑖 𝐻𝑖1𝑗 

1 330 435 268 223 357 𝑟 = 1 

2 294 272 591 460 572 

3 441 254 508 290 214 

4 263 375 586 378 436 

5 559 559 231 564 295 

𝑖 𝐻𝑖2𝑗 

1 562 300 227 294 460 𝑟 = 2 

2 578 515 546 354 253 

3 334 372 232 303 565 

4 456 425 408 258 393 

5 384 331 379 414 236 

 

Table 7: Allocations obtained by CPLEX 

𝑖       

1 0 0 0 0 0 

𝑟 = 1 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 56 

5 0 0 0 0 0 

1 0 0 0 0 0 

𝑟 = 2 

2 0 0 0 0 0 

3 89 57 0 71 0 

4 0 0 90 0 0 

5 0 0 0 0 0 

𝑗 1 2 3 4 5  

 

Table 8: Allocations obtained using HA 

𝑖       

1 0 0 0 0 0 

𝑟 = 1 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

1 0 0 0 0 0 

𝑟 = 2 

2 0 0 0 0 0 

3 89 57 0 71 0 

4 0 0 90 0 56 

5 0 0 0 0 0 

𝑗 1 2 3 4 5  

 

We define limits of significant difference in effectiveness performance as 

about 5% based on the popular alpha level applied on many empirical 

tests. This implies that any difference in values between the results posted 

by CPLEX and HA that is in this range is probably not significant enough. If 

we follow this approach it can be seen in Table 5 above that the instances 

tend to show less significant differences with increase in problem sizes, 

while more significant differences are observed with the smaller problem 

sizes. In addition, the percentage difference in solution time (% gap i  

(Time) across the problem instances indicates that the HA solution seems 

much faster than CPLEX. 

 

Table 9: Mean effectiveness, mean  efficiency and % gap mean 

Problem 

Size 

𝑪𝑷𝑳𝑬𝑿 𝒎𝒆𝒂𝒏 

  (Min 

Cost) 

𝑯𝑮𝑨 𝒎𝒆𝒂𝒏 

 (Min 

Cost) 

𝑪𝑷𝑳𝑬𝑿 𝒎𝒆𝒂𝒏 

 (Min 

Cost) 

𝑯𝑮𝑨 𝒎𝒆𝒂𝒏 

  (Time) 

% 𝐠𝐚𝐩 𝐦𝐞𝐚𝐧 

 (Min 

Cost) 

% 𝐠𝐚𝐩 𝐦𝐞𝐚𝐧 

 (Time) 

5X5X2 17701.

49 

19690

.16 

1.13 0.13 11.2% -89% 

5X8X2 26647.

22 

28925

.51 

3.03 0.17 8.5% -95% 

7X10X

2 

33924.

54 

34012

.53 

4.61 0.21 0.3% -96% 

8X8X2 26023.

03 

25818

.20 

2.96 0.17 -0.8% -94% 

9X12X

2 

39229.

06 

40139

.52 

6.65 1.07 2.3% -84% 

10X10

X2 

30209.

51 

29994

.11 

4.70 0.92 -0.7% -80% 

10X20

x2 

63268.

29 

66535

.35 

17.92 1.71 5.2% -90% 

15X30

X2 

83765.

77 

88080

.54 

55.34 2.63 5.2% -95% 

30X30

X2 

81515.

99 

81740

.29 

58.54 2.88 0.3% -95% 

 

The group results as shown in Table 9 above also indicate that there seems 

not to be any significant difference in effectiveness as the problem size 

increases while efficiency seems to favour HA. Figure 14 below shows a 

plot of the solution time of the HA and CPLEX as the problem size 

increases. The increase in solution time trend indicates possibility of the 

HA obtaining solutions faster than CPLEX when interpreted as probably 

being equivalent as stated earlier. 

 

Figure 14: Computation time between CPLEX and HA per problem size 

0

10

20

30

40

50

60

m
ea

n
 s

o
lu

ti
o

n
 t

im
e(

Se
co

n
d

s)

Problem size

 CPLEX

 HGA



Engineering Heritage Journal (GWK) 5(1) (2021) 01-11 

 

 
Cite the Article: Gbeminiyi John Oyewole, Olufemi Adetunji (2021).  A Hybrid Algorithm to Solve the Fixed Charge Solid Location and Transportation Problem.   

Engineering Heritage Journal, 5(1): 01-11. 

 
 

In Figure 15 we show a representation of the number of times each 

solution method obtained comparable results for each problem size. By 

comparable results we imply the results obtained by HA are within a 

neighborhood of between (0% and -5%) of CPLEX values. In Figure 15, we 

also show a representation of results of CPLEX that were significantly 

better than HA. By being significantly better we imply the computations  

% gap i (Min Cost) greater than 5%.  These analyses were done for the 

minimum cost computation (effectiveness). 

 

Figure 15: Instances CPLEX obtained comparable and significantly better 

results than HA 

A summary of the results presented, showed that CPLEX seems able to 

obtain better results than the HA most of the times. Nonetheless, CPLEX 

could become computationally intensive as problem size increases and 

may return good values in an exponential time when larger sized problems 

are considered. Therefore, the HA which may not guarantee the best 

solutions most of the times but converges faster with good performances 

for many problem instances can be of significant value for solving the 

FCSLTP.  

6. CONCLUSION AND FUTURE DIRECTION 

An optimization problem that integrates facility location and the fixed 

charge solid transportation problem was considered in this paper. This 

problem was termed Fixed Charge Solid Location and Transportation 

problem (FCSLTP).  In order to solve this problem, solutions from CPLEX 

commercial solver and our Hybrid Algorithm (HA) were considered. Our 

HA utilizes the Genetic Algorithm framework to generate a population of 

feasible facility locations, while a greedy heuristic which uses cost 

relaxations implements the load allocation. After the allocations are done, 

an improvement heuristic is used to further search the solution space for 

better results. Some measures of performance such as mean, percentage 

instance and mean gap were used to assess the HA and the CPLEX 

solutions. The solution time and mean solution time were also used to 

assess both solution methods.   

The HA demonstrated a competitive performance in obtaining solutions 

within the neighborhood of CPLEX values based on our effectiveness 

measure. In addition, the solution time of the HA seems much faster than 

CPLEX through all the problem sizes considered, and this even more so as 

the problem size increases. However, overall effectiveness results indicate 

that CPLEX can obtain results comparable to and sometimes much 

significantly better than HA. This however could be computationally 

intensive for CPLEX as problem size increases. Possible extensions to the 

HA include using a modified stepping stone that can search the non-basic 

positions of the load allocations.  Furthermore, the GA or other 

metaheuristics could also be used to perturb the load allocations in search 

of better results. The reduced computation time of the HA makes it 

suitable as a hybrid heuristic to other solution methods to obtain better 

results. 
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